Active suppression of temperature oscillation from a pulse-tube cryocooler in a cryogen-free cryostat: Part 1. Simulation modeling from thermal response characteristics

[1]  Dongxu Han,et al.  Active suppression of temperature oscillation from a pulse-tube cryocooler in a cryogen-free cryostat: Part 2. Experimental realization , 2020, 2002.03178.

[2]  Dongxu Han,et al.  Realization of an ultra-high precision temperature control in a cryogen-free cryostat. , 2018, The Review of scientific instruments.

[3]  Andrea Sosso,et al.  Experimental analysis of the thermal behavior of a GM cryocooler based on linear system theory , 2018, International Journal of Refrigeration.

[4]  Dongxu Han,et al.  Chinese SPRIGT realizes high temperature stability in the range of 5-25 K. , 2018, Science bulletin.

[5]  P. Lin,et al.  Feasibility of primary thermometry using refractive index measurements at a single pressure , 2017 .

[6]  V. Giordano,et al.  A low power cryocooled autonomous ultra-stable oscillator , 2016 .

[7]  J. Delmas,et al.  Cool-down acceleration of G-M cryocoolers with thermal oscillations passively damped by helium , 2015 .

[8]  Bernd Fellmuth,et al.  Dielectric-constant gas thermometry , 2015 .

[9]  I. Božović,et al.  Sub-millikelvin stabilization of a closed cycle cryocooler. , 2014, The Review of scientific instruments.

[10]  Yonghua Huang,et al.  Experimental investigation on sub-miliKelvin temperature control at liquid hydrogen temperatures , 2014 .

[11]  L. Xiong,et al.  A new cryostat for precise temperature control , 2013 .

[12]  M. Matsumura,et al.  Temperature oscillation suppression of GM cryocooler , 2012 .

[13]  Hiroya Yamamoto,et al.  Reduction of temperature fluctuation within low temperature region using a cryocooler. , 2011, The Review of scientific instruments.

[14]  Z. Bowden,et al.  Cryogen-free cryostat for neutron scattering sample environment , 2011 .

[15]  L. You,et al.  Performance of superconducting nanowire single photon detection system with different temperature variation , 2010 .

[16]  S. Vanzetto,et al.  A 2.8 K cryogen-free cryostat with compact optical geometry for multiple photon counting. , 2009, The Review of scientific instruments.

[17]  G. Thummes,et al.  DAMPING OF INTRINSIC TEMPERATURE OSCILLATIONS IN A 4 K PULSE TUBE COOLER BY MEANS OF RARE EARTH PLATES , 2008 .

[18]  O. Tamura,et al.  Comparison System for the Calibration of Capsule-Type Standard Platinum Resistance Thermometers at NMIJ/AIST , 2008 .

[19]  M. Moldover,et al.  Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K , 2006 .

[20]  Jinyang Liu,et al.  Adaptive optimal PI controller for high-precision low-temperature experiments , 2005, Proceedings of the 2005, American Control Conference, 2005..

[21]  J. Lockhart,et al.  Cryogenic precision digital temperature control with peaked frequency response , 2004 .

[22]  Dongxu Han,et al.  Thermal response characteristics of a SPRIGT primary thermometry system , 2019, Cryogenics.

[23]  Jiten H. Bhatt,et al.  Derivation of Transfer Function Model based on Miniaturized Cryocooler Behavior , 2016 .

[24]  T. Satoh,et al.  Temperature Stabilization on Cold Stage of 4 K G-M Cryocooler , 1997 .

[25]  P. Steur,et al.  Constant-Volume Gas Thermometry Between 4 K and 100 K , 1986 .