On twin substantially improved thermal properties and stability of pyrrolidinium-based ionanofluids with long multi-walled carbon nanotubes

[1]  M. Dzida,et al.  On isobaric heat capacity of ionanofluids with carbon nanotubes – an experimental study , 2023, Journal of Molecular Liquids.

[2]  Carlos E. S. Bernardes,et al.  High-Performance Ionanofluids from Subzipped Carbon Nanotube Networks , 2022, ACS applied materials & interfaces.

[3]  M. Dzida,et al.  Effect of ultrasonication time on microstructure, thermal conductivity, and viscosity of ionanofluids with originally ultra-long multi-walled carbon nanotubes , 2021, Ultrasonics sonochemistry.

[4]  M. Dzida,et al.  Bio-Based Nanofluids of Extraordinary Stability and Enhanced Thermal Conductivity as Sustainable Green Heat Transfer Media , 2021 .

[5]  C. Xu,et al.  Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite) , 2021 .

[6]  R. Turczyn,et al.  Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials , 2021 .

[7]  M. Dzida,et al.  Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi-Walled Carbon Nanotubes , 2020, Fluids.

[8]  M. Fang,et al.  Flexible polyethylene glycol/polyvinylpyrrolidone composite phase change fibres: Preparation, characterization, and thermal conductivity enhancement , 2020 .

[9]  M. Dzida,et al.  Thermophysical Properties of IoNanofluids Composed of 1-ethyl-3-methylimidazolium Thiocyanate and Carboxyl-functionalized Long Multi-walled Carbon Nanotubes , 2020 .

[10]  M. Libera,et al.  Remarkable Thermal Conductivity Enhancement in Carbon-Based Ionanofluids: Effect of Nanoparticle Morphology , 2020, ACS applied materials & interfaces.

[11]  B. Jóźwiak,et al.  Rheology of ionanofluids – A review , 2020 .

[12]  F. Gumerov,et al.  Thermal conductivity and thermal diffusivity of Pyrrolidinium-BasedIonic liquids at atmospheric pressure , 2019, Fluid Phase Equilibria.

[13]  Xue-Hong Wu,et al.  Variations of thermophysical properties and heat transfer performance of nanoparticle-enhanced ionic liquids , 2019, Royal Society Open Science.

[14]  J. Jacquemin,et al.  Ionic liquid-based nanofluids (ionanofluids) for thermal applications: an experimental thermophysical characterization , 2019, Pure and Applied Chemistry.

[15]  J. Jacquemin,et al.  Thermal Conductivity Enhancement Phenomena in Ionic Liquid-Based Nanofluids (Ionanofluids) , 2019, Australian Journal of Chemistry.

[16]  A. Minea,et al.  A review on development of ionic liquid based nanofluids and their heat transfer behavior , 2018, Renewable and Sustainable Energy Reviews.

[17]  A. Pádua,et al.  Thermal Conductivity of Ionic Liquids and IoNanofluids and Their Feasibility as Heat Transfer Fluids , 2018 .

[18]  J. Jacquemin,et al.  Further development of the predictive models for physical properties of pure ionic liquids: Thermal conductivity and heat capacity , 2018 .

[19]  C. Castaño,et al.  Preparation and Enhanced Thermal Performance of Novel (Solid to Gel) Form-Stable Eutectic PCM Modified by Nano-Graphene Platelets , 2018 .

[20]  M. Dzida,et al.  Pyrrolidinium-Based Ionic Liquids as Sustainable Media in Heat-Transfer Processes , 2017 .

[21]  J. Jacquemin,et al.  Isobaric and Isochoric Heat Capacities of Imidazolium-Based and Pyrrolidinium-Based Ionic Liquids as a Function of Temperature: Modeling of Isobaric Heat Capacity , 2017 .

[22]  J. Khan,et al.  Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal applications , 2017 .

[23]  E. Fileti,et al.  Exfoliation of Graphene in Ionic Liquids: Pyridinium versus Pyrrolidinium , 2017 .

[24]  Jinghui Zeng,et al.  Stable, High-Efficiency Pyrrolidinium-Based Electrolyte for Solid-State Dye-Sensitized Solar Cells. , 2015, ACS applied materials & interfaces.

[25]  Iuliia V. Voroshylova,et al.  Systematic refinement of Canongia Lopes-Pádua force field for pyrrolidinium-based ionic liquids. , 2014, The journal of physical chemistry. B.

[26]  Yanping Yuan,et al.  Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage , 2014 .

[27]  S. M. Sohel Murshed,et al.  Superior thermal features of carbon nanotubes-based nanofluids – A review , 2014 .

[28]  Sanjay Mathur,et al.  Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power , 2014 .

[29]  Zhengguo Zhang,et al.  Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications , 2014 .

[30]  Chaohong He,et al.  Speed of sound of ionic liquids: Database, estimation, and its application for thermal conductivity prediction , 2014 .

[31]  T. Makino,et al.  Pressure–volume–temperature–composition relations for carbon dioxide + pyrrolidinium-based ionic liquid binary systems , 2013 .

[32]  P. Simões,et al.  Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanofluids , 2013 .

[33]  A. Ribeiro,et al.  Thermal Conductivity of [C n mim][(CF 3 SO 2 ) 2 N] and [C 4 mim][BF 4 ] IoNanofluids with Carbon Nanotubes—Measurement, Theory and Structural Characterization , 2013 .

[34]  Ke-Jun Wu,et al.  Development of a group contribution method for determination of thermal conductivity of ionic liquids , 2013 .

[35]  S. M. Sohel Murshed,et al.  Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids , 2012 .

[36]  Hajime Miyashiro,et al.  Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids , 2012 .

[37]  Zhengguo Zhang,et al.  Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene , 2012, Nanoscale Research Letters.

[38]  E. Maginn,et al.  Thermal and Transport Properties of Six Ionic Liquids: An Experimental and Molecular Dynamics Study , 2012 .

[39]  Emilio J. González,et al.  Temperature Dependence and Structural Influence on the Thermophysical Properties of Eleven Commercial Ionic Liquids , 2012 .

[40]  K. R. Harris,et al.  Transport Properties of N-Butyl-N-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide , 2011 .

[41]  Shan Hu,et al.  The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials , 2011 .

[42]  Peter Wasserscheid,et al.  Thermal Conductivity of Ionic Liquids: Measurement and Prediction , 2010 .

[43]  Elisa Langa,et al.  Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids , 2010 .

[44]  David Rooney,et al.  Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K , 2007 .

[45]  Kikuko Hayamizu,et al.  How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. , 2006, The journal of physical chemistry. B.

[46]  B. González,et al.  Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols , 2014 .

[47]  V. Everett,et al.  Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications , 2014 .

[48]  Chul-Woong Cho,et al.  Environmental fate and toxicity of ionic liquids: a review. , 2010, Water research.