How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”
暂无分享,去创建一个
[1] M. Malek. Vector Calculus , 2014 .
[2] Gilles A. Francfort,et al. Revisiting brittle fracture as an energy minimization problem , 1998 .
[3] Paul Steinmann,et al. On the Material Setting of Gradient Hyperelasticity , 2006 .
[4] M. McLean,et al. Encyclopedia of materials science and technology , 1986 .
[5] Geometric evolution of the Reynolds stress tensor in three-dimensional turbulence , 2009, 0903.4949.
[6] G. Maugin. The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool , 2013 .
[7] S. Forest. Milieux continus généralisés et matériaux hétérogènes , 2006 .
[8] S. Forest. Generalized Continuum Modelling of Single and Polycrystal Plasticity , 2005 .
[9] Ioannis Vardoulakis,et al. Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics , 2001 .
[10] A gradient approach to localization of deformation 227 materials , 2004 .
[11] Paul Steinmann,et al. On boundary potential energies in deformational and configurational mechanics , 2008 .
[12] Pierre Seppecher,et al. Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .
[13] Morton E. Gurtin,et al. Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales , 2006 .
[14] W. Noll. Lectures on the foundations of continuum mechanics and thermodynamics , 1973 .
[15] R. Fosdick. Observations concerning virtual power , 2011 .
[16] M. Šilhavý. The existence of the flux vector and the divergence theorem for general Cauchy fluxes , 1985 .
[17] W. Noll,et al. On edge interactions and surface tension , 1990 .
[18] Witold Kosiński. Field singularities and wave analysis in continuum mechanics , 1986 .
[19] Iwona M Jasiuk,et al. Multiscale modeling of elastic properties of cortical bone , 2010 .
[20] Andrei V. Metrikine,et al. Mechanics of generalized continua : one hundred years after the Cosserats , 2010 .
[21] Ching S. Chang,et al. Application of higher-order tensor theory for formulating enhanced continuum models , 2000 .
[22] A. Carcaterra,et al. Hydroelastic Analysis of a Simple Oscillator Impacting the Free Surface , 2000 .
[23] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[24] Benvenuto Edoardo,et al. La scienza delle costruzioni e il suo sviluppo storico , 2006 .
[25] R. Rivlin,et al. On cauchy's equations of motion , 1964 .
[26] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[27] Gianpietro Del Piero,et al. ON THE METHOD OF VIRTUAL POWER IN CONTINUUM MECHANICS , 2009 .
[28] Antonio Carcaterra,et al. Shock spectral analysis of elastic systems impacting on the water surface , 2000 .
[29] Albert Edward Green,et al. Multipolar continuum mechanics: functional theory I , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[30] M. Ostoja-Starzewski,et al. Micropolar continuum mechanics of fractal media , 2011 .
[31] P. Germain. Mécanique des milieux continus , 1962 .
[32] J. E. Dunn,et al. On the thermomechanics of interstitial working , 1985 .
[33] Clifford Ambrose Truesdell,et al. A first course in rational continuum mechanics , 1976 .
[34] Nicolas Triantafyllidis,et al. On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models , 1993 .
[35] Martin Ostoja-Starzewski,et al. Microstructural Randomness and Scaling in Mechanics of Materials , 2007 .
[36] W. Noll. The Foundations of Classical Mechanics in the Light of Recent Advances in Continuum Mechanics , 1974 .
[37] S. Forest. Mechanics of generalized continua: construction by homogenizaton , 1998 .
[38] Morton E. Gurtin,et al. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .
[39] J. Bleustein. A note on the boundary conditions of toupin's strain-gradient theory , 1967 .
[40] F. dell’Isola,et al. Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers , 1993 .
[41] Ugo Andreaus,et al. Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response , 2011 .
[42] Stefan Diebels,et al. A second‐order homogenization procedure for multi‐scale analysis based on micropolar kinematics , 2007 .
[43] G. Maugin,et al. Virtual power and thermodynamics for electromagnetic continua with interfaces , 1986 .
[44] Antonio Carcaterra,et al. ENERGY FLOW UNCERTAINTIES IN VIBRATING SYSTEMS: DEFINITION OF A STATISTICAL CONFIDENCE FACTOR , 2003 .
[45] Macrohomogeneity condition in dynamics of micropolar media , 2011 .
[46] H. F. Tiersten,et al. Effects of couple-stresses in linear elasticity , 1962 .
[47] Antonin Chambolle,et al. Revisiting Energy Release Rates in Brittle Fracture , 2010, J. Nonlinear Sci..
[48] Martin Ostoja-Starzewski,et al. Stress invariance in planar Cosserat elasticity , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[49] A. Misra,et al. Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .
[50] P. Podio-Guidugli,et al. Contact interactions, stress and material symmetry , 2002 .
[51] M. Gurtin,et al. A continuum mechanical theory for turbulence: a generalized Navier–Stokes-α equation with boundary conditions , 2008 .
[52] Francesco dell’Isola,et al. The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .
[53] Edge-force densities and second-order powers , 2006 .
[54] I. Jasiuk,et al. Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. , 2009, Journal of biomechanical engineering.
[55] Holm Altenbach,et al. Mechanics of Generalized Continua , 2010 .
[56] Reinach Théodore. Vailati (Giovanni). 1. Del concetto di centro di gravita nella sta- lico d'Archimedo. 2. Il principio dei lavori virtuali da Aristotele a Erone d'Alessandria. , 1899 .
[57] Clifford Ambrose Truesdell. A first course in rational continuum mechanics. Volume 1 - General concepts , 1977 .
[58] M. Sokołowski. Theory of couple-stresses in bodies with constrained rotations , 1970 .
[59] Sergey Gavrilyuk,et al. Criterion of hyperbolicity for non‐conservative quasilinear systems admitting a partially convex conservation law , 2011 .
[60] Pierre Seppecher,et al. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .
[61] A Carcaterra,et al. Near-irreversibility in a conservative linear structure with singularity points in its modal density. , 2006, The Journal of the Acoustical Society of America.
[62] Glaucio H. Paulino,et al. Strain Gradient Elasticity for Antiplane Shear Cracks: A Hypersingular Integrodifferential Equation Approach , 2002, SIAM J. Appl. Math..
[63] Antonio Carcaterra,et al. Energy density equations and power flow in structures , 1995 .
[64] Paul Steinmann,et al. On higher gradients in continuum-atomistic modelling , 2003 .
[65] Iwona M Jasiuk,et al. A micromechanically based couple–stress model of an elastic two-phase composite , 2001 .
[66] I. Jasiuk,et al. A micromechanically based couple-stress model of an elastic orthotropic two-phase composite , 2002 .
[67] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[68] R. D. Mindlin. Stress functions for a Cosserat continuum , 1965 .
[69] Nicolas Triantafyllidis,et al. A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .
[70] I. Jasiuk,et al. ON THE REDUCTION OF CONSTANTS IN PLANAR COSSERAT ELASTICITY WITH EIGENSTRAINS AND EIGENCURVATURES , 2003 .
[71] S. Forest,et al. Homogenization methods and the mechanics of generalized continua-part 2 S , 2002 .
[72] R. D. Mindlin. Second gradient of strain and surface-tension in linear elasticity , 1965 .
[73] W. Noll. The geometry of contact, separation, and reformation of continuous bodies , 1993 .
[74] On the “principle of virtual power” for arbitrary parts of a body , 2011 .
[75] Francesco dell’Isola,et al. A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio‐resorbable materials , 2012 .
[76] Hady Joumaa,et al. Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[77] P. Germain,et al. The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .
[78] A. Akay,et al. Dissipation in a finite-size bath. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[79] Raymond D. Mindlin,et al. Influence of couple-stresses on stress concentrations , 1963 .
[80] M. Šilhavý. Cauchy's stress theorem and tensor fields with divergences in Lp , 1991 .
[81] H. Gouin,et al. Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité , 1985 .
[82] R. Toupin,et al. Theories of elasticity with couple-stress , 1964 .
[83] R. Rivlin,et al. Simple force and stress multipoles , 1964 .
[84] J. L. S. Luk. Mémoire d'habilitation à diriger des recherches , 2000 .
[85] Sergey Gavrilyuk,et al. A new form of governing equations of fluids arising from Hamilton's principle , 1999, 0801.2333.
[86] Antonin Chambolle,et al. When and how do cracks propagate? , 2009, Journal of the Mechanics and Physics of Solids.
[87] P. Podio-Guidugli. Contact interactions , stress , and material symmetry , for nonsimple elastic materials , 2002 .
[88] Mondher Neifar. Cours de Mécanique des Milieux Continus , 2009 .
[89] Nicolas Triantafyllidis,et al. Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models , 1994 .
[90] R. S. Rivlin,et al. Multipolar continuum mechanics , 1964 .
[91] Yang Yang,et al. Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .
[92] Ugo Andreaus,et al. Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams , 2009 .
[93] G. Maugin,et al. The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces , 1986 .
[94] John H. Hubbard,et al. Student solution manual for the second edition of Vector calculus, linear algebra, and differential forms, a unified approach , 1998 .
[95] M. Gurtin,et al. The Mechanics and Thermodynamics of Continua , 2010 .
[96] Ugo Andreaus,et al. Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator , 2010 .
[97] R. Toupin. Elastic materials with couple-stresses , 1962 .
[98] Marco Degiovanni,et al. Cauchy Fluxes Associated with Tensor Fields Having Divergence Measure , 1999 .
[99] P. Seppecher,et al. Edge Contact Forces and Quasi-Balanced Power , 1997, 1007.1450.
[100] Iwona M Jasiuk,et al. Couple-stress moduli and characteristics length of a two-phase composite , 1999 .
[101] J. Serrin. New Perspectives in Thermodynamics , 1986 .
[102] On the principle of virtual powers in continuum mechanics , 2006 .
[103] P. Seppecher,et al. Beyond Euler-Cauchy Continua: The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. , 2011 .
[104] C. Polizzotto. Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions , 2007 .
[105] A variational proof of the stress theorem of Cauchy , 1989 .
[106] Decomposition and integral representation of Cauchy interactions associated with measures , 2001 .
[107] P. Podio-Guidugli. A virtual power format for thermomechanics , 2009 .
[108] L. Schwartz. Théorie des distributions , 1966 .
[109] Jean-Jacques Marigo,et al. The Effective Behavior of Elastic Bodies Containing Microcracks or Microholes Localized on a Surface , 2011 .
[110] Ugo Andreaus,et al. Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system , 2011 .
[111] Lallit Anand,et al. Thermodynamics applied to gradient theories involving the accumulated plastic strain : The theories of Aifantis and Fleck and Hutchinson and their generalization , 2009 .
[112] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[113] A Carcaterra,et al. Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. , 2007, The Journal of the Acoustical Society of America.
[114] Tomasz Lekszycki,et al. A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery , 2011 .
[115] A. Musesti,et al. Balanced Powers in Continuum Mechanics , 2003 .
[116] P. Podio-Guidugli,et al. Hypertractions and hyperstresses convey the same mechanical information , 2009, 0906.4199.
[117] R. D. Mindlin. Micro-structure in linear elasticity , 1964 .
[118] J. E. Dunn. Interstitial Working and a Nonclassical Continuum Thermodynamics , 1986 .
[119] Erhan Cinlar,et al. Fatigue Crack Growth , 1996 .
[120] Raymond D. Mindlin,et al. On the equations of elastic materials with micro-structure , 1965 .
[121] P. Seppecher,et al. Fluid Shock Wave Generation at Solid-Material Discontinuity Surfaces in Porous Media , 2011 .
[122] V. L. Berdichevskiĭ. Variational principles of continuum mechanics , 2009 .
[123] E. Cosserat,et al. Théorie des Corps déformables , 1909, Nature.
[124] Pierre Seppecher. Etude des conditions aux limites en théorie du second gradient: cas de la capillarité , 1989 .
[125] R. D. Mindlin,et al. On first strain-gradient theories in linear elasticity , 1968 .
[126] C. Truesdell,et al. The Classical Field Theories , 1960 .
[127] Antonio Carcaterra,et al. Ensemble energy average and energy flow relationships for nonstationary vibrating systems , 2005 .
[128] Nicolas Triantafyllidis,et al. THE INFLUENCE OF SCALE SIZE ON THE STABILITY OF PERIODIC SOLIDS AND THE ROLE OF ASSOCIATED HIGHER ORDER GRADIENT CONTINUUM MODELS , 1996 .
[129] F. Schuricht. A New Mathematical Foundation for Contact Interactions in Continuum Physics , 2007 .