How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”

Navier–Cauchy format for Continuum Mechanics is based on the concept of contact interaction between sub-bodies of a given continuous body. In this paper, it is shown how—by means of the Principle of Virtual Powers—it is possible to generalize Cauchy representation formulas for contact interactions to the case of Nth gradient continua, that is, continua in which the deformation energy depends on the deformation Green–Saint-Venant tensor and all its N − 1 order gradients. In particular, in this paper, the explicit representation formulas to be used in Nth gradient continua to determine contact interactions as functions of the shape of Cauchy cuts are derived. It is therefore shown that (i) these interactions must include edge (i.e., concentrated on curves) and wedge (i.e., concentrated on points) interactions, and (ii) these interactions cannot reduce simply to forces: indeed, the concept of K-forces (generalizing similar concepts introduced by Rivlin, Mindlin, Green, and Germain) is fundamental and unavoidable in the theory of Nth gradient continua.

[1]  M. Malek Vector Calculus , 2014 .

[2]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[3]  Paul Steinmann,et al.  On the Material Setting of Gradient Hyperelasticity , 2006 .

[4]  M. McLean,et al.  Encyclopedia of materials science and technology , 1986 .

[5]  Geometric evolution of the Reynolds stress tensor in three-dimensional turbulence , 2009, 0903.4949.

[6]  G. Maugin The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool , 2013 .

[7]  S. Forest Milieux continus généralisés et matériaux hétérogènes , 2006 .

[8]  S. Forest Generalized Continuum Modelling of Single and Polycrystal Plasticity , 2005 .

[9]  Ioannis Vardoulakis,et al.  Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics , 2001 .

[10]  A gradient approach to localization of deformation 227 materials , 2004 .

[11]  Paul Steinmann,et al.  On boundary potential energies in deformational and configurational mechanics , 2008 .

[12]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[13]  Morton E. Gurtin,et al.  Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales , 2006 .

[14]  W. Noll Lectures on the foundations of continuum mechanics and thermodynamics , 1973 .

[15]  R. Fosdick Observations concerning virtual power , 2011 .

[16]  M. Šilhavý The existence of the flux vector and the divergence theorem for general Cauchy fluxes , 1985 .

[17]  W. Noll,et al.  On edge interactions and surface tension , 1990 .

[18]  Witold Kosiński Field singularities and wave analysis in continuum mechanics , 1986 .

[19]  Iwona M Jasiuk,et al.  Multiscale modeling of elastic properties of cortical bone , 2010 .

[20]  Andrei V. Metrikine,et al.  Mechanics of generalized continua : one hundred years after the Cosserats , 2010 .

[21]  Ching S. Chang,et al.  Application of higher-order tensor theory for formulating enhanced continuum models , 2000 .

[22]  A. Carcaterra,et al.  Hydroelastic Analysis of a Simple Oscillator Impacting the Free Surface , 2000 .

[23]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[24]  Benvenuto Edoardo,et al.  La scienza delle costruzioni e il suo sviluppo storico , 2006 .

[25]  R. Rivlin,et al.  On cauchy's equations of motion , 1964 .

[26]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[27]  Gianpietro Del Piero,et al.  ON THE METHOD OF VIRTUAL POWER IN CONTINUUM MECHANICS , 2009 .

[28]  Antonio Carcaterra,et al.  Shock spectral analysis of elastic systems impacting on the water surface , 2000 .

[29]  Albert Edward Green,et al.  Multipolar continuum mechanics: functional theory I , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  M. Ostoja-Starzewski,et al.  Micropolar continuum mechanics of fractal media , 2011 .

[31]  P. Germain Mécanique des milieux continus , 1962 .

[32]  J. E. Dunn,et al.  On the thermomechanics of interstitial working , 1985 .

[33]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[34]  Nicolas Triantafyllidis,et al.  On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models , 1993 .

[35]  Martin Ostoja-Starzewski,et al.  Microstructural Randomness and Scaling in Mechanics of Materials , 2007 .

[36]  W. Noll The Foundations of Classical Mechanics in the Light of Recent Advances in Continuum Mechanics , 1974 .

[37]  S. Forest Mechanics of generalized continua: construction by homogenizaton , 1998 .

[38]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[39]  J. Bleustein A note on the boundary conditions of toupin's strain-gradient theory , 1967 .

[40]  F. dell’Isola,et al.  Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers , 1993 .

[41]  Ugo Andreaus,et al.  Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response , 2011 .

[42]  Stefan Diebels,et al.  A second‐order homogenization procedure for multi‐scale analysis based on micropolar kinematics , 2007 .

[43]  G. Maugin,et al.  Virtual power and thermodynamics for electromagnetic continua with interfaces , 1986 .

[44]  Antonio Carcaterra,et al.  ENERGY FLOW UNCERTAINTIES IN VIBRATING SYSTEMS: DEFINITION OF A STATISTICAL CONFIDENCE FACTOR , 2003 .

[45]  Macrohomogeneity condition in dynamics of micropolar media , 2011 .

[46]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[47]  Antonin Chambolle,et al.  Revisiting Energy Release Rates in Brittle Fracture , 2010, J. Nonlinear Sci..

[48]  Martin Ostoja-Starzewski,et al.  Stress invariance in planar Cosserat elasticity , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[49]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[50]  P. Podio-Guidugli,et al.  Contact interactions, stress and material symmetry , 2002 .

[51]  M. Gurtin,et al.  A continuum mechanical theory for turbulence: a generalized Navier–Stokes-α equation with boundary conditions , 2008 .

[52]  Francesco dell’Isola,et al.  The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .

[53]  Edge-force densities and second-order powers , 2006 .

[54]  I. Jasiuk,et al.  Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. , 2009, Journal of biomechanical engineering.

[55]  Holm Altenbach,et al.  Mechanics of Generalized Continua , 2010 .

[56]  Reinach Théodore Vailati (Giovanni). 1. Del concetto di centro di gravita nella sta- lico d'Archimedo. 2. Il principio dei lavori virtuali da Aristotele a Erone d'Alessandria. , 1899 .

[57]  Clifford Ambrose Truesdell A first course in rational continuum mechanics. Volume 1 - General concepts , 1977 .

[58]  M. Sokołowski Theory of couple-stresses in bodies with constrained rotations , 1970 .

[59]  Sergey Gavrilyuk,et al.  Criterion of hyperbolicity for non‐conservative quasilinear systems admitting a partially convex conservation law , 2011 .

[60]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[61]  A Carcaterra,et al.  Near-irreversibility in a conservative linear structure with singularity points in its modal density. , 2006, The Journal of the Acoustical Society of America.

[62]  Glaucio H. Paulino,et al.  Strain Gradient Elasticity for Antiplane Shear Cracks: A Hypersingular Integrodifferential Equation Approach , 2002, SIAM J. Appl. Math..

[63]  Antonio Carcaterra,et al.  Energy density equations and power flow in structures , 1995 .

[64]  Paul Steinmann,et al.  On higher gradients in continuum-atomistic modelling , 2003 .

[65]  Iwona M Jasiuk,et al.  A micromechanically based couple–stress model of an elastic two-phase composite , 2001 .

[66]  I. Jasiuk,et al.  A micromechanically based couple-stress model of an elastic orthotropic two-phase composite , 2002 .

[67]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[68]  R. D. Mindlin Stress functions for a Cosserat continuum , 1965 .

[69]  Nicolas Triantafyllidis,et al.  A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .

[70]  I. Jasiuk,et al.  ON THE REDUCTION OF CONSTANTS IN PLANAR COSSERAT ELASTICITY WITH EIGENSTRAINS AND EIGENCURVATURES , 2003 .

[71]  S. Forest,et al.  Homogenization methods and the mechanics of generalized continua-part 2 S , 2002 .

[72]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[73]  W. Noll The geometry of contact, separation, and reformation of continuous bodies , 1993 .

[74]  On the “principle of virtual power” for arbitrary parts of a body , 2011 .

[75]  Francesco dell’Isola,et al.  A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio‐resorbable materials , 2012 .

[76]  Hady Joumaa,et al.  Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[77]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[78]  A. Akay,et al.  Dissipation in a finite-size bath. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Raymond D. Mindlin,et al.  Influence of couple-stresses on stress concentrations , 1963 .

[80]  M. Šilhavý Cauchy's stress theorem and tensor fields with divergences in Lp , 1991 .

[81]  H. Gouin,et al.  Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité , 1985 .

[82]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[83]  R. Rivlin,et al.  Simple force and stress multipoles , 1964 .

[84]  J. L. S. Luk Mémoire d'habilitation à diriger des recherches , 2000 .

[85]  Sergey Gavrilyuk,et al.  A new form of governing equations of fluids arising from Hamilton's principle , 1999, 0801.2333.

[86]  Antonin Chambolle,et al.  When and how do cracks propagate? , 2009, Journal of the Mechanics and Physics of Solids.

[87]  P. Podio-Guidugli Contact interactions , stress , and material symmetry , for nonsimple elastic materials , 2002 .

[88]  Mondher Neifar Cours de Mécanique des Milieux Continus , 2009 .

[89]  Nicolas Triantafyllidis,et al.  Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models , 1994 .

[90]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[91]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[92]  Ugo Andreaus,et al.  Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams , 2009 .

[93]  G. Maugin,et al.  The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces , 1986 .

[94]  John H. Hubbard,et al.  Student solution manual for the second edition of Vector calculus, linear algebra, and differential forms, a unified approach , 1998 .

[95]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[96]  Ugo Andreaus,et al.  Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator , 2010 .

[97]  R. Toupin Elastic materials with couple-stresses , 1962 .

[98]  Marco Degiovanni,et al.  Cauchy Fluxes Associated with Tensor Fields Having Divergence Measure , 1999 .

[99]  P. Seppecher,et al.  Edge Contact Forces and Quasi-Balanced Power , 1997, 1007.1450.

[100]  Iwona M Jasiuk,et al.  Couple-stress moduli and characteristics length of a two-phase composite , 1999 .

[101]  J. Serrin New Perspectives in Thermodynamics , 1986 .

[102]  On the principle of virtual powers in continuum mechanics , 2006 .

[103]  P. Seppecher,et al.  Beyond Euler-Cauchy Continua: The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. , 2011 .

[104]  C. Polizzotto Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions , 2007 .

[105]  A variational proof of the stress theorem of Cauchy , 1989 .

[106]  Decomposition and integral representation of Cauchy interactions associated with measures , 2001 .

[107]  P. Podio-Guidugli A virtual power format for thermomechanics , 2009 .

[108]  L. Schwartz Théorie des distributions , 1966 .

[109]  Jean-Jacques Marigo,et al.  The Effective Behavior of Elastic Bodies Containing Microcracks or Microholes Localized on a Surface , 2011 .

[110]  Ugo Andreaus,et al.  Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system , 2011 .

[111]  Lallit Anand,et al.  Thermodynamics applied to gradient theories involving the accumulated plastic strain : The theories of Aifantis and Fleck and Hutchinson and their generalization , 2009 .

[112]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[113]  A Carcaterra,et al.  Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. , 2007, The Journal of the Acoustical Society of America.

[114]  Tomasz Lekszycki,et al.  A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery , 2011 .

[115]  A. Musesti,et al.  Balanced Powers in Continuum Mechanics , 2003 .

[116]  P. Podio-Guidugli,et al.  Hypertractions and hyperstresses convey the same mechanical information , 2009, 0906.4199.

[117]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[118]  J. E. Dunn Interstitial Working and a Nonclassical Continuum Thermodynamics , 1986 .

[119]  Erhan Cinlar,et al.  Fatigue Crack Growth , 1996 .

[120]  Raymond D. Mindlin,et al.  On the equations of elastic materials with micro-structure , 1965 .

[121]  P. Seppecher,et al.  Fluid Shock Wave Generation at Solid-Material Discontinuity Surfaces in Porous Media , 2011 .

[122]  V. L. Berdichevskiĭ Variational principles of continuum mechanics , 2009 .

[123]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[124]  Pierre Seppecher Etude des conditions aux limites en théorie du second gradient: cas de la capillarité , 1989 .

[125]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[126]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[127]  Antonio Carcaterra,et al.  Ensemble energy average and energy flow relationships for nonstationary vibrating systems , 2005 .

[128]  Nicolas Triantafyllidis,et al.  THE INFLUENCE OF SCALE SIZE ON THE STABILITY OF PERIODIC SOLIDS AND THE ROLE OF ASSOCIATED HIGHER ORDER GRADIENT CONTINUUM MODELS , 1996 .

[129]  F. Schuricht A New Mathematical Foundation for Contact Interactions in Continuum Physics , 2007 .