Controlling the polarity of the transient ferromagneticlike state in ferrimagnets

It was recently observed that the two antiferromagnetically coupled sublattices of a rare earth-transition metal ferrimagnet can temporarily align ferromagnetically during femtosecond laser heating, but always with the transition metal aligning in the rare earth direction. This behavior has been attributed to the slower magnetization dynamics of the rare earth sublattice. The aim of this work was to assess how the difference in the speed of the transition metal and rare earth dynamics affects the formation of the transient ferromagneticlike state and consequently controls its formation. Our investigation was performed using extensive atomistic spin simulations and analytic micromagnetic theory of ferrimagnets, with analysis of a large area of parameter space such as initial temperature, Gd concentration, and laser fluence. Surprisingly, we found that at high temperatures, close to the Curie point, the rare earth dynamics become faster than those of the transition metal. Subsequently we show that the transient state can be formed with the opposite polarity, where the rare earth aligns in the transition metal direction. Our findings shed light on the complex behavior of this class of ferrimagnetic materials and highlight an important feature which must be considered, or even exploited, if these materials are to be used in ultrafast magnetic devices.

[1]  M. Cinchetti,et al.  Feedback effect during ultrafast demagnetization dynamics in ferromagnets. , 2013, Physical review letters.

[2]  M. Helm,et al.  Thermally Assisted All‐Optical Helicity Dependent Magnetic Switching in Amorphous Fe100–xTbx Alloy Films , 2013, Advanced materials.

[3]  M. Cinchetti,et al.  Interplay of heating and helicity in all-optical magnetization switching , 2012 .

[4]  H. Dürr,et al.  Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by femtosecond x-ray magnetic circular dichroism. , 2010, Physical review letters.

[5]  H. Dürr,et al.  Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins , 2011, Nature.

[6]  Eric E. Fullerton,et al.  Light-induced magnetization reversal of high-anisotropy TbCo alloy films , 2012, 1206.6978.

[7]  A. Thomas,et al.  Insights into Ultrafast Demagnetization in Pseudogap Half-Metals , 2012, 1202.3874.

[8]  U. Nowak,et al.  Orbital-resolved spin model for thermal magnetization switching in rare-earth-based ferrimagnets , 2013 .

[9]  U. Nowak,et al.  Temperature dependence of the frequencies and effective damping parameters of ferrimagnetic resonance , 2012 .

[10]  T. Rasing,et al.  All-optical magnetic recording with circularly polarized light. , 2007, Physical review letters.

[11]  U. Nowak,et al.  THz switching of antiferromagnets and ferrimagnets. , 2012, Physical review letters.

[12]  M. Cinchetti,et al.  Temperature Dependence of Laser-Induced Demagnetization in Ni: A Key for Identifying the Underlying Mechanism , 2012 .

[13]  D. Garanin,et al.  FOKKER-PLANCK AND LANDAU-LIFSHITZ-BLOCH EQUATIONS FOR CLASSICAL FERROMAGNETS , 1997, cond-mat/9805054.

[14]  M. Katsnelson,et al.  Ultrafast spin dynamics in multisublattice magnets. , 2012, Physical review letters.

[15]  M. Battiato,et al.  Superdiffusive spin transport as a mechanism of ultrafast demagnetization. , 2010, Physical review letters.

[16]  R. W. Chantrell,et al.  Two-magnon bound state causes ultrafast thermally induced magnetisation switching , 2013, Scientific Reports.

[17]  Denise Hinzke,et al.  Towards multiscale modeling of magnetic materials : Simulations of FePt , 2008 .

[18]  B. Koopmans,et al.  Comparing ultrafast demagnetization rates between competing models for finite temperature magnetism. , 2013, Physical review letters.

[19]  Arata Tsukamoto,et al.  Crystallographically amorphous ferrimagnetic alloys: Comparing a localized atomistic spin model with experiments , 2011 .

[20]  Andrei Kirilyuk,et al.  Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys , 2013, Reports on progress in physics. Physical Society.

[21]  Oksana Chubykalo-Fesenko,et al.  Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001) , 2012 .

[22]  U. Nowak,et al.  Ultrafast spin dynamics: the effect of colored noise. , 2008, Physical review letters.

[23]  R. Chantrell,et al.  Classical spin model of the relaxation dynamics of rare-earth doped permalloy , 2012 .

[24]  S. Moussaoui,et al.  Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet , 2012, Nature Communications.

[25]  M. Münzenberg,et al.  Evidence for thermal mechanisms in laser-induced femtosecond spin dynamics , 2010 .

[26]  U. Nowak,et al.  Slow recovery of the magnetisation after a sub-picosecond heat pulse , 2007 .

[27]  B. Koopmans,et al.  Unifying ultrafast magnetization dynamics. , 2005, Physical review letters.

[28]  B. Koopmans,et al.  Microscopic model for ultrafast magnetization dynamics of multisublattice magnets , 2013 .

[29]  A. Khorsand,et al.  The role of magnetization compensation point for efficient ultrafast control of magnetization in Gd24Fe66.5Co9.5 alloy , 2013 .

[30]  A. Manchon,et al.  Theory of laser-induced demagnetization at high temperatures , 2011, 1112.2428.

[31]  S. Moussaoui,et al.  Demonstration of laser induced magnetization reversal in GdFeCo nanostructures , 2012 .

[32]  S. Pisana,et al.  Speed limit of FePt spin dynamics on femtosecond timescales , 2013, 1306.3112.

[33]  S. Pisana,et al.  Resolving the role of femtosecond heated electrons in ultrafast spin dynamics , 2014, Scientific Reports.

[34]  W. Schlotter,et al.  Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. , 2013, Nature materials.

[35]  A. Khorsand,et al.  Element-specific probing of ultrafast spin dynamics in multisublattice magnets with visible light. , 2013, Physical review letters.

[36]  U. Atxitia,et al.  Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model , 2010, 1011.5054.

[37]  D. Garanin Generalized equation of motion for a ferromagnet , 1991 .

[38]  T. Rasing,et al.  Femtosecond laser excitation of spin resonances in amorphous ferrimagnetic Gd(1-x)Co(x) alloys. , 2011, Physical review letters.

[39]  O. Chubykalo-Fesenko,et al.  Landau-Lifshitz-Bloch equation for ferrimagnetic materials , 2012, 1206.6672.

[40]  J. K. Chen,et al.  A semiclassical two-temperature model for ultrafast laser heating , 2006 .

[41]  Theo Rasing,et al.  Ultrafast thermally induced magnetic switching in synthetic ferrimagnets , 2013, 1310.5170.

[42]  H. Kachkachi,et al.  Unified decoupling scheme for exchange and anisotropy contributions and temperature-dependent spectral properties of anisotropic spin systems , 2012, 1205.6646.

[43]  R. Chantrell,et al.  Ultrafast dynamical path for the switching of a ferrimagnet after femtosecond heating , 2012, 1207.4092.

[44]  M. Cinchetti,et al.  Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. , 2010, Nature materials.