Advanced hydrogen storage alloys for Ni/MH rechargeable batteries

Hydrogen storage alloys are of particular interest as a novel group in functional materials owing to their potential and practical applications in Ni/MH rechargeable batteries. This review is devoted to the specific alloy families developed for high-energy and high-power Ni/MH batteries in the last decades, especially for EV, HEV and PHEV applications. The scope of the work encompasses principles of Ni/MH batteries, electrochemical hydrogen storage thermodynamics and kinetics, prerequisites for hydrogen storage electrode alloys and recent advances in hydrogen storage electrode alloys. Rare earth AB5-type alloys, Ti- and Zr-based AB2-type alloys, Mg-based amorphous/nanocrystalline alloys, rare earth-Mg–Ni-based alloys and Ti–V-based alloys are highlighted. Additionally, the challenges met in developing advanced hydrogen storage alloys for Ni/MH rechargeable batteries are pointed out and some research directions are suggested.

[1]  S. Dou,et al.  Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.% Ti2Ni , 1996 .

[2]  D. Northwood,et al.  Charging/Discharging Stability of a Metal Hydride Battery Electrode , 1999 .

[3]  Tadayoshi Tanaka,et al.  Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys , 2006 .

[4]  S. Dou,et al.  Discharge behaviour of Mg2Ni-type hydrogen-storage alloy electrodes in 6 M KOH solution by electrochemical impedance spectroscopy , 1996 .

[5]  Rui Li,et al.  Effects of Ni on the structural and electrochemical properties of Ti–V-based hydrogen storage alloys , 2006 .

[6]  Changchun Zhu,et al.  Effect of Mg on the hydrogen storage characteristics of Ml1-xMgxNi2.4Co0.6 (x = 0-0.6) alloys , 2006 .

[7]  H. Pan,et al.  Influence of annealing treatment on Laves phase compound containing a V-based BCC solid solution phase—Part II: Electrochemical properties , 2003 .

[8]  S. Ovshinsky,et al.  A Nickel Metal Hydride Battery for Electric Vehicles , 1993, Science.

[9]  H. Pan,et al.  A Study of the Structural and Electrochemical Properties of La0.7Mg0.3 ( Ni0.85Co0.15 ) x ( x = 2.5 ­ 5.0 ) Hydrogen Storage Alloys , 2003 .

[10]  M. Kanda,et al.  Effect of Partial Substitution on Hydrogen Storage Properties of Mg2Ni Alloy , 1997 .

[11]  Hiroshi Inoue,et al.  Hydriding and electrochemical characteristics of a homogeneous amorphous Mg2Ni-Ni composite , 1998 .

[12]  M. Fetcenko,et al.  The correlation of C14/C15 phase abundance and electrochemical properties in the AB2 alloys , 2010 .

[13]  G. Lu,et al.  A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys , 2004 .

[14]  Yuan Li,et al.  Study on kinetics and electrochemical properties of low-Co AB5-type alloys for high-power Ni/MH battery , 2009 .

[15]  Xin-bo Zhang,et al.  Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3.5 − x(Al0.5Mo0.5)x (x = 0–0.8) hydrogen storage alloys , 2006 .

[16]  H. Pan,et al.  Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4−xMn0.1Cox hydride alloys: II. Electrochemical properties , 2004 .

[17]  Jai-Young Lee,et al.  The effects of partial substitution of Mn by Cr on the electrochemical cycle life of Ti-Zr-V-Mn-Ni alloy electrodes of a Ni/MH battery , 1998 .

[18]  H. Pan,et al.  Function of Al on the cycling behavior of the La–Mg–Ni–Co-type alloy electrodes , 2008 .

[19]  Ke‐long Huang,et al.  Effects of metal oxides addition on the electrochemical performance of M1Ni3.5Co0.6Mn0.4Al0.5 hydrogen storage alloy , 2009, Journal of Materials Science.

[20]  Y. Lei,et al.  Effect of alloying with Ti, V, Mn on the electrochemical properties of ZrCrNi based Laves phase metal hydride electrodes , 1996 .

[21]  S. Dou,et al.  Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi5-based alloy electrodes , 1996 .

[22]  J. Ma,et al.  Effect of alloys modified by an alkaline solution containing potassium borohydride on the kinetic properties of MlNi3.7Co0.6Mn0.4Al0.3 hydride electrode , 1999 .

[23]  M. Haruta,et al.  Hydrogen Storage Alloys with PuNi3 ‐ Type Structure as Metal Hydride Electrodes , 1999 .

[24]  T. Iwaki,et al.  Electrode characteristics of C15-type laves phasealloys , 1991 .

[25]  Phl Peter Notten,et al.  Double-Phase Hydride Forming Compounds: A New Class of Highly Electrocatalytic Materials , 1991 .

[26]  C. Badcock,et al.  Electrochemical utilization of metal hydrides , 1983 .

[27]  H. Pan,et al.  Degradation Mechanism of the La-Mg-Ni-Based Metal Hydride Electrode La0.7Mg0.3Ni3.4Mn0.1 , 2005 .

[28]  Xueping Gao,et al.  Characteristics of the superstoichiometric C15-type Laves phase alloys and their hydride electrodes , 1995 .

[29]  J. Joubert,et al.  Intermetallic compounds as negative electrodes of Ni/MH batteries , 2001 .

[30]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[31]  Tetsuo Sakai,et al.  Development of Mg-containing MmNi5-based alloys for low-cost and high-power Ni–MH battery , 2006 .

[32]  M. Sato,et al.  Hydrogen storage properties and structure of La1−xMgx(Ni1−yMny)3 intermetallics and their hydrides , 2007 .

[33]  J. R. Johnson,et al.  Cerium Content and Cycle Life of Multicomponent AB 5 Hydride Electrodes , 1995 .

[34]  J. Shen,et al.  Electrochemical hydrogen storage in Ti–V-based alloys surface-modified with carbon nanoparticles , 2006 .

[35]  Yongning Liu,et al.  The effect of partial substitution of Si for Ni on the electrochemical properties of cobalt-free LaNi4.2−xAl0.35Mn0.45Six (x = 0–0.35) alloys , 2009 .

[36]  Stanford R. Ovshinsky,et al.  Recent advances in NiMH battery technology , 2007 .

[37]  Hiroshi Senoh,et al.  Electrochemical characterization of MmNi4.0-xMn0.75Al0.25Cox electrodes as a function of cobalt content , 1998 .

[38]  Rui Li,et al.  A study on the structural and electrochemical properties of La0.7−xNdxMg0.3Ni2.45Co0.75Mn0.1Al0.2 (x = 0.0–3.0) hydrogen storage alloys , 2008 .

[39]  Rui Li,et al.  Effects of Cr on the structural and electrochemical properties of TiV-based two-phase hydrogen storage alloys , 2005 .

[40]  Yu Zhao,et al.  Effects of rare earth elements substitution for Ti on the structure and electrochemical properties of a Fe-doped Ti–V-based hydrogen storage alloy , 2009 .

[41]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[42]  Yi Liu,et al.  Effects of annealing on microstructures and electrochemical properties of La0.8Mg0.2Ni2.4Mn0.10Co0.55Al0.10 alloy , 2008 .

[43]  Xueping Gao,et al.  Multi-electron reaction materials for high energy density batteries , 2010 .

[44]  Liqun Ma,et al.  Novel surface treatment for hydrogen storage alloy in Ni/MH battery , 2009 .

[45]  E. Akiba,et al.  Crystal structure of multiphase alloys (Zr,Ti)(Mn,V)2 , 1995 .

[46]  Phl Peter Notten,et al.  Hydrogen storage in metastable MgyTi(1 y) thin films , 2006 .

[47]  P. He,et al.  Synthesis and characterization of nanocrystalline magnesium-based hydrogen storage alloy electrode materials , 1999 .

[48]  Yi Liu,et al.  Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen-storage alloy , 2008 .

[49]  Phl Peter Notten,et al.  Electrochemical hydrogen storage characteristics of thin film MgX (X = Sc, Ti, V, Cr) compounds , 2005 .

[50]  Rui Li,et al.  Structural and electrochemical properties of hydrogen storage alloys Ti0.8Zr0.2V2.7Mn0.5Cr0.8Nix (x = 1.50–2.25) , 2004 .

[51]  Lin Hu,et al.  Effect of rare earth elements on electrochemical properties of La-Mg-Ni-based hydrogen storage alloys , 2009 .

[52]  H. Pan,et al.  Hydrogen storage and electrochemical properties of the La 0.7Mg 0.3Ni 3.825− x Co 0.675Mn x hydrogen storage electrode alloys , 2004 .

[53]  S. Ye,et al.  The chemical preparation of Mo(W)Co(Ni) and their influence on hydrogen storage electrode , 1999 .

[54]  Marek Nowak,et al.  Nanoscale Mg-based materials for hydrogen storage , 2008 .

[55]  Xiao-ping Dong,et al.  Influences of the substitution of Fe for Ni on structures and electrochemical performances of the as-cast and quenched La0.7Mg0.3Co0.45Ni2.55−xFex (x = 0–0.4) electrode alloys , 2008 .

[56]  Ji-Sang Yu,et al.  The Cycle Life of Ti0.8Zr0.2 V 0.5Mn0.5 − x Cr x Ni0.8 ( x = 0 to 0.5 ) Alloys for Metal Hydride Electrodes of Ni‐Metal Hydride Rechargeable Battery , 2000 .

[57]  P. Sridhar,et al.  Effect of surface treatment on electrochemical properties of TiMn1.6Ni0.4 alloy in alkaline electrolyte , 2002 .

[58]  Yongjia Zhang,et al.  Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy , 2010 .

[59]  D. Northwood,et al.  Hydrogen-absorbing alloys for the nickel-metal hydride battery , 1998 .

[60]  Rui Li,et al.  XRD study of the hydrogenation and dehydrogenation process of the two different phase components in a Ti-V-based multiphase hydrogen storage electrode alloy , 2004 .

[61]  H. Matthews,et al.  Future CO2 Emissions and Climate Change from Existing Energy Infrastructure , 2010, Science.

[62]  Mario Conte,et al.  Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials , 2004 .

[63]  Ralph E. White,et al.  Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution , 1995 .

[64]  Rui Li,et al.  Effects of annealing temperature on structure and the electrochemical properties of La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2 hydrogen storage alloy , 2005 .

[65]  M. Pasturel,et al.  Various ways including substitution and protection used to improve the cyclability of ‘MgNi’ electrodes , 2003 .

[66]  E. Akiba,et al.  Crystal structure, phase abundance and electrode performance of Laves phase compounds (Zr, A)V0.5Ni1.1Mn0.2Fe0.2 (A Ti, Nb or Hf) , 1995 .

[67]  Rui Li,et al.  Structure and electrochemical properties of the Fe substituted Ti–V-based hydrogen storage alloys , 2008 .

[68]  G. Lu,et al.  Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3−xNi9 (x=1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries , 2004 .

[69]  T. Mishima,et al.  Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes , 1997 .

[70]  H. Pan,et al.  Structure and electrochemical properties of La0.7Mg0.3Ni2.45-xCo0.75Mn0.1Al0.2Wx (x=0–0.15) hydrogen storage alloys , 2006 .

[71]  C. Iwakura,et al.  Effect of the stoichiometric ratio on electrochemical properties of hydrogen storage alloys for nickel-metal hydride batteries , 1995 .

[72]  T. Sakai,et al.  Rare-earth-based alloy electrodes for a nickel-metal hydride battery , 1991 .

[73]  Rui Li,et al.  Intrinsic/Extrinsic Degradation of Ti-V-Based Hydrogen Storage Electrode Alloys upon Cycling , 2008 .

[74]  Hiroshi Senoh,et al.  A Co-Free AB 5-Type Hydrogen Storage Alloy for Nickel-Metal Hydride Batteries: LmNi4.0Al0.3Si0.1Fe0.6 , 2002 .

[75]  S. Dou,et al.  Hydrogen desorption and electrode properties of Zr0.8Ti0.2(V0.3Ni0.6M0.1)2 , 1997 .

[76]  T. Sakai,et al.  Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery , 2007 .

[77]  Rui Li,et al.  Effect of the cerium content on the structural and electrochemical properties of the La0.7−xCexMg0.3Ni2.875Mn0.1Co0.525 (x=0–0.5) hydrogen storage alloys , 2004 .

[78]  Kuochih Hong The development of hydrogen storage electrode alloys for nickel hydride batteries , 2001 .

[79]  H. Pan,et al.  A study on the effect of annealing treatment on the electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes , 2003 .

[80]  H. Inoue,et al.  Effect of stoichiometric ratio on discharge efficiency of hydrogen storage alloy electrodes , 1997 .

[81]  Björn Andersson,et al.  Requirement for metals of electric vehicle batteries , 2001 .

[82]  B. Ratnakumar,et al.  Electrochemical Studies on LaNi5 − x Sn x Metal Hydride Alloys , 1996 .

[83]  Lixian Sun,et al.  Effect of La partial substitution for Zr on the Structural and electrochemical properties of Ti0.17Zr0.08-xLaxV0.35Cr0.1Ni0.3 (x = 0–0.04) electrode alloys , 2009 .

[84]  T. Sakai,et al.  Electrochemical impedance and deterioration behavior of metal hydride electrodes , 1993 .

[85]  Liqun Ma,et al.  Electrochemical properties of (La1−xTix)0.67Mg0.33Ni2.75Co0.25 (x = 0–0.20, at%) hydrogen storage alloys , 2010 .

[86]  P. Notten,et al.  High energy density strategies: from hydride-forming materials research to battery integration , 2004 .

[87]  Yongning Liu,et al.  Effect of small amounts of Li on microstructures and electrochemical properties of non-stoichiometric low-Co AB5-type alloys , 2006 .

[88]  James F. Miller,et al.  Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems , 2006 .

[89]  K. Asai,et al.  Surface modification of metal hydride negative electrodes and their charge/discharge performance , 1992 .

[90]  H. Ye,et al.  Effect of Ni content on the structure, thermodynamic and electrochemical properties of the non-stoichiometric hydrogen storage alloys , 2000 .

[91]  Chen Yungui,et al.  The influence of Cu(OH)2 addition on the low-temperature electrochemical performance of La0.75Mg0.25Ni3.5 hydrogen storage alloy , 2009 .

[92]  Yang-huan Zhang,et al.  Hydrogenation and dehydrogenation behaviours of nanocrystalline Mg20Ni10−xCux (x = 0−4) alloys prepared by melt spinning , 2010 .

[93]  Z. Wronski Materials for rechargeable batteries and clean hydrogen energy sources , 2001 .

[94]  D. Richter,et al.  Fundamentals and properties of some Ti/Mn based laves phase hydrides , 1989 .

[95]  H. Pan,et al.  An improvement on cycling stability of Ti–V–Fe-based hydrogen storage alloys with Co substitution for Ni , 2008 .

[96]  T. Sakai,et al.  Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9 , 1999 .

[97]  Jai-Young Lee,et al.  Effect of annealing treatment on electrochemical properties of Mm-based hydrogen storage alloys for Ni/MH batteries , 1998 .

[98]  E. Akiba,et al.  Crystal structure and hydrogen storage properties of La–Mg–Ni–Co alloy with superstructure , 2007 .

[99]  Structure of the secondary phase and its effects on hydrogen-storage properties in a Ti0.7Zr0.2V0.1Ni alloy , 1998 .

[100]  Raymond J. Kopp,et al.  Energy Resources and Global Development , 2003, Science.

[101]  A. Shukla,et al.  Nickel-based rechargeable batteries , 2001 .

[102]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[103]  A. Züttel,et al.  Electrochemical and surface properties of iron-containing AB5-type alloys , 1995 .

[104]  J. Ma,et al.  Effect of Co content on the kinetic properties of the MlNi4.3−XCoXAl0.7 hydride electrodes , 1999 .

[105]  S. Bourlot,et al.  Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries , 2006 .

[106]  T. Sakai,et al.  Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure , 2000 .

[107]  H. Pan,et al.  Effects of Y Substitution for Ti on the Microstructure and Electrochemical Properties of Ti-V-Fe-Based Hydrogen Storage Alloys , 2007 .

[108]  H. Pan,et al.  Investigation of the Structural and Electrochemical Properties of Superstoichiometric Ti-Zr-V-Mn-Cr-Ni Hydrogen Storage Alloys , 2002 .

[109]  M. Fetcenko,et al.  Effects of aluminum substitution in C14-rich multi-component alloys for NiMH battery application , 2010 .

[110]  G. Lu,et al.  The electrochemical properties of LaxMg3−xNi9 (x=1.0–2.0) hydrogen storage alloys , 2003 .

[111]  S. A. Steward,et al.  Hydrogen and deuterium sorption by selected rare earth intermetallic compounds at pressures up to 1500 atm , 1980 .

[112]  Lixin Chen,et al.  The effect of Ni content on the electrochemical and surface characteristics of Mg90−xTi10Nix (x=50, 55, 60) ternary hydrogen storage electrode alloys , 2001 .

[113]  Corinna Wu Better batteries for electric vehicles , 2010 .

[114]  M. Anik Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying , 2010 .

[115]  Lixian Sun,et al.  Electrochemical hydrogen storage properties of La0.7Mg0.3Ni3.5-Ti0.17Zr0.08V0.35Cr0.1Ni0.3 composites , 2008 .

[116]  Shuanglong Feng,et al.  Influence of Fe addition on hydrogen storage characteristics of Ti-V-based alloy , 2006 .

[117]  Rui Li,et al.  Electrochemical performances of the Pd-added Ti-V-based hydrogen storage alloys , 2008 .

[118]  S. Ye,et al.  Electrochemical properties of Mg-based alloys containing carbon nanotubes , 2004 .

[119]  M. Anik Improvement of the electrochemical hydrogen storage performance of Mg2Ni by the partial replacements of Mg by Al, Ti and Zr , 2009 .

[120]  Y. Lei,et al.  Electrochemical Behaviour of Some Mechanically Alloyed Mg — Ni-Based Amorphous Hydrogen Storage Alloys* , 1994 .

[121]  K. Oguro,et al.  Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries , 1990 .

[122]  T. Sakai,et al.  Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers , 1997 .

[123]  Ke‐long Huang,et al.  Microstructures and electrochemical properties of Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) hydrogen storage alloys , 2010 .

[124]  M. Zhu,et al.  Microstructure and hydrogen storage properties of a multi-phase Ml0.7Mg0.3Ni3.2 hydrogen storage alloy , 2004 .

[125]  D. Shaltiel Hydride properties of AB2 laves phase compounds , 1978 .

[126]  H. Pan,et al.  A study on improving the cycling stability of (Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)4 hydrogen storage electrode alloy by means of annealing treatment: II. Effects on the electrochemical properties , 2003 .

[127]  F. Cuevas,et al.  Influence of thermal annealing on the hydrogenation properties of mechanically milled AB5-type alloys , 2004 .

[128]  M. Fetcenko,et al.  Annealing effects on structural and electrochemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy , 2009 .

[129]  Y. Cai,et al.  Effects of substituting Ni with Cu on the microstructures and electrochemical characteristics of the as-cast and quenchedLa0.7Mg0.3Ni2.55-xCo0.45Cux(x=0–0.4)electrode alloys , 2007 .

[130]  H. Pan,et al.  A study on the microstructures and electrochemical properties of La0.7Mg0.3Ni2.45-xCrxCo0.75Mn0.1Al0.2(x=0.00–0.20) hydrogen storage electrode alloys , 2008 .

[131]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[132]  H. Pan,et al.  A study on improving the cycling stability of (Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)4 hydrogen storage electrode alloy by means of annealing treatment: I. Effects on the structures , 2002 .

[133]  H. Oesterreicher,et al.  Hydride formation in La1−xMgxNi2☆ , 1980 .

[134]  Y. Lei,et al.  A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy , 1996 .

[135]  Phl Peter Notten,et al.  The Influence of Mn on the Crystallography and Electrochemistry of Nonstoichiometric AB 5 ‐ Type Hydride‐Forming Compounds , 1999 .

[136]  Lin Hu,et al.  The effect of Nd content on the electrochemical properties of low-Co La–Mg–Ni-based hydrogen storage alloys , 2008 .

[137]  S. Bliznakov,et al.  Electrochemical properties of nanocrystalline Mg2Ni-type alloys prepared by mechanical alloying , 2005 .

[138]  Rui Li,et al.  Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x = 0.00–0.85) metal hydride electrode alloys for Ni/MH batteries Part II: Electrochemical performances , 2005, Journal of Alloys and Compounds.

[139]  H. Inoue,et al.  Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni , 1998 .

[140]  J. R. Johnson,et al.  The correlation between composition and electrochemical properties of metal hydride electrodes , 1999 .

[141]  H. Pan,et al.  Effect of the substitution of PR for LA on the microstructure and electrochemical properties of La0.7-xPrxMg0.3Ni2.45Co0.75Mn0.1Al0.2(x=0.0–0.3) hydrogen storage electrode alloys , 2007 .

[142]  J. Skowronski,et al.  Electrochemical behavior of metal hydrides , 2001 .

[143]  H. Pan,et al.  Influence of annealing treatment on Laves phase compound containing a V-based BCC solid solution phase—Part I: Crystal structures , 2003 .

[144]  H. A. Peretti,et al.  Study of the different ZrxNiy phases of Zr-based AB2 materials , 2010 .

[145]  S. Ovshinsky,et al.  Development of high catalytic activity disordered hydrogen-storage alloys for electrochemical application in nickel–metal hydride batterie , 2001 .

[146]  N. Drenchev,et al.  Еlectrochemical hydriding/dehydriding of nanocrystalline Mg2−xSnxNi (x = 0, 0.1, 0.3) , 2008 .

[147]  M. Fetcenko,et al.  Structural, thermodynamic, and electrochemical properties of TixZr1−x(VNiCrMnCoAl)2 C14 Laves phase alloys , 2008 .

[148]  Yanqun Zhu,et al.  Phase structure, crystallography and electrochemical properties of Laves phase compounds Ti0.8Zr0.2V1.6Mn0.8−xMxNi0.6 (M=Fe,Al,Cr,Co) , 2001 .

[149]  Jai-Young Lee,et al.  A review on the development of AB2-type Zr-based Laves phase hydrogen storage alloys for Ni-MH rechargeable batteries in the Korea Advanced Institute of Science and Technology , 1999 .

[150]  Louis Schlapbach,et al.  Hydrogen in Intermetallic Compounds , 1983 .

[151]  Lifang Jiao,et al.  Preparation and electrochemical properties of MgNi–MB (M = Co, Ti) composite alloys , 2008 .

[152]  D. Northwood,et al.  Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review , 2001 .

[153]  M. Kanda,et al.  Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14 , 2000 .

[154]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[155]  Rui Li,et al.  Influence of Mn content on the structural and electrochemical properties of the La0.7Mg0.3Ni4.25−xCo0.75Mnx hydrogen storage alloys , 2004 .

[156]  H. Pan,et al.  Electrochemical Properties of the La0.7Mg0.3Ni2.65 − x Mn0.1Co0.75Al x ( x = 0 ­ 0.5 ) Hydrogen Storage Alloy Electrodes , 2005 .

[157]  T. Mishima,et al.  V-based solid solution alloys with Laves phase network: Hydrogen absorption properties and microstructure , 1996 .

[158]  Jai-Young Lee,et al.  The Ti-based metal hydride electrode for NiMH rechargeable batteries , 1996 .

[159]  Lixin Chen,et al.  Effects of annealing on microstructure and electrochemical properties of the low Co-containing alloy Ml(NiCoMnAlFe)5 for Ni/MH battery electrode , 2004 .