Shared-role of vegetation types, elevation and soil affecting plant diversity in an old-tropical mountain hotspot

[1]  C. R. de Souza,et al.  Old climatically-buffered infertile landscapes (OCBILs): more than harsh habitats, Atlantic Forest inselbergs can be drivers of evolutionary diversity , 2022, Journal of Mountain Science.

[2]  M. A. Assis,et al.  Family legacy: contrasting diversity–elevation relationships on a coastal Atlantic Forest mountain system , 2022, Plant Ecology.

[3]  P. Marquet,et al.  IPBES-IPCC co-sponsored workshop report on biodiversity and climate change , 2021 .

[4]  M. Bueno,et al.  Understanding how environmental heterogeneity and elevation drives the distribution of woody communities across vegetation types within the campo rupestre in South America , 2021, Journal of Mountain Science.

[5]  Zhiheng Wang,et al.  Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. , 2021, The Science of the total environment.

[6]  R. Ricklefs,et al.  Evolutionary assembly of flowering plants into sky islands , 2021, Nature Ecology & Evolution.

[7]  L. Morellato,et al.  Plant communities in tropical ancient mountains: how are they spatially and evolutionary structured? , 2021 .

[8]  J. R. Pinto,et al.  Diversity and structural changes in Cerrado Rupestre under effects of disturbances , 2021 .

[9]  D. Carstensen,et al.  Pollination in the campo rupestre: a test of hypothesis for an ancient tropical mountain vegetation , 2021, Biological Journal of the Linnean Society.

[10]  H. Birks High-elevation limits and the ecology of high-elevation vascular plants: legacies from Alexander von Humboldt , 2021, Frontiers of Biogeography.

[11]  M. Gastauer,et al.  Landscape heterogeneity and habitat amount drive plant diversity in Amazonian canga ecosystems , 2020, Landscape Ecology.

[12]  D. Zappi,et al.  Iron islands in the Amazon: investigating plant beta diversity of canga outcrops , 2020, PhytoKeys.

[13]  Natalia Costa Soares,et al.  Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot , 2020, Perspectives in Ecology and Conservation.

[14]  G. Fernandes,et al.  More is not always better: responses of the endemic plant Vellozia nanuzae to additional nutrients , 2020 .

[15]  G. Niedrist,et al.  Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps , 2020, Scientific Reports.

[16]  J. Oldeland,et al.  Influence of elevation on the species–area relationship , 2020, Journal of Biogeography.

[17]  F. Forest,et al.  Fast diversification through a mosaic of evolutionary histories characterizes the endemic flora of ancient Neotropical mountains , 2020, Proceedings of the Royal Society B.

[18]  H. Lambers,et al.  Vellozioid roots allow for habitat specialization among rock‐ and soil‐dwelling Velloziaceae in campos rupestres , 2019, Functional Ecology.

[19]  L. Morellato,et al.  Plant phylogenetic diversity of tropical mountaintop rocky grasslands: local and regional constraints , 2019, Plant Ecology.

[20]  F. Silveira,et al.  Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot , 2019, Perspectives in Plant Ecology, Evolution and Systematics.

[21]  H. Xin,et al.  The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport's rule depend on different life‐forms and phytogeographic affinities , 2019, Ecology and evolution.

[22]  H. Lambers,et al.  Soil types select for plants with matching nutrient‐acquisition and ‐use traits in hyperdiverse and severely nutrient‐impoverished campos rupestres and cerrado in Central Brazil , 2018, Journal of Ecology.

[23]  B. Soares-Filho,et al.  Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the Brazilian Cerrado under climate change , 2018, Biodiversity and Conservation.

[24]  R. Dirzo,et al.  The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands , 2018, Biodiversity and Conservation.

[25]  Leonor Patricia C. Morellato,et al.  Local and regional specialization in plant-pollinator networks , 2018 .

[26]  F. Silveira,et al.  Plant life in campo rupestre: New lessons from an ancient biodiversity hotspot , 2017 .

[27]  David C. Tank,et al.  Riders in the sky (islands): Using a mega‐phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life , 2017, Journal of biogeography.

[28]  J. Kattge,et al.  Testing the environmental filtering concept in global drylands , 2017, The Journal of ecology.

[29]  G. Fernandes,et al.  Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil , 2017 .

[30]  G. Fernandes,et al.  Regeneration after fire in campo rupestre: Short- and long-term vegetation dynamics , 2016 .

[31]  C. Schaefer,et al.  Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority , 2015, Plant and Soil.

[32]  Nathan J B Kraft,et al.  Community assembly, coexistence and the environmental filtering metaphor , 2015 .

[33]  H. Lambers,et al.  Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. , 2015, The New phytologist.

[34]  G. Fernandes,et al.  Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil , 2014, Journal of Mountain Science.

[35]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[36]  R. Alves,et al.  Circumscribing campo rupestre - megadiverse Brazilian rocky montane savanas. , 2014, Brazilian journal of biology = Revista brasleira de biologia.

[37]  Pierre Legendre,et al.  Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. , 2013, Ecology letters.

[38]  A. Baselga The relationship between species replacement, dissimilarity derived from nestedness, and nestedness , 2012 .

[39]  Kalle Ruokolainen,et al.  Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results , 2012 .

[40]  C. Orme,et al.  betapart: an R package for the study of beta diversity , 2012 .

[41]  J. Baillie,et al.  Review of multispecies indices for monitoring human impacts on biodiversity , 2012 .

[42]  H. O. Venterink Does phosphorus limitation promote species-rich plant communities? , 2011, Plant and Soil.

[43]  H. Lambers,et al.  Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies , 2010, Plant and Soil.

[44]  Gustavo Henrique Carvalho,et al.  Plantminer: A web tool for checking and gathering plant species taxonomic information , 2010, Environ. Model. Softw..

[45]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[46]  Y. Pueyo,et al.  A comparison of simultaneous autoregressive and generalized least squares models for dealing with spatial autocorrelation , 2009 .

[47]  C. Schaefer,et al.  Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço , 2007 .

[48]  Marti J. Anderson,et al.  Multivariate dispersion as a measure of beta diversity. , 2006, Ecology letters.

[49]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[50]  Pierre Legendre,et al.  Comparison of permutation methods for the partial correlation and partial mantel tests , 2000 .

[51]  J. Gentle,et al.  Randomization and Monte Carlo Methods in Biology. , 1990 .

[52]  G. Fernandes,et al.  Floristic mosaics of the threatened Brazilian campo rupestre , 2022, Nature Conservation Research.

[53]  G. Fernandes,et al.  Reproductive phenology of two co‐occurring Neotropical mountain grasslands , 2018 .

[54]  C. Schaefer,et al.  The Physical Environment of Rupestrian Grasslands (Campos Rupestres) in Brazil: Geological, Geomorphological and Pedological Characteristics, and Interplays , 2016 .

[55]  J. Heino,et al.  Exploring species and site contributions to beta diversity in stream insect assemblages , 2016, Oecologia.

[56]  N. Cobb,et al.  Cerrado to Rupestrian Grasslands: Patterns of Species Distribution and the Forces Shaping Them Along an Altitudinal Gradient , 2016 .

[57]  H. Lambers,et al.  Ecophysiology of Campos Rupestres Plants , 2016 .

[58]  G. Fernandes,et al.  Vegetation composition and structure of some Neotropical mountain grasslands in Brazil , 2015, Journal of Mountain Science.

[59]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[60]  G. Fernandes,et al.  The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi , 2012 .

[61]  H. Lambers,et al.  Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies , 2011, Plant and Soil.

[62]  Jonathan M. Chase,et al.  Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. , 2011, Ecology letters.

[63]  A. Baselga Partitioning the turnover and nestedness components of beta diversity , 2010 .

[64]  K. Barton MuMIn : multi-model inference, R package version 0.12.0 , 2009 .

[65]  Mark V. Lomolino,et al.  Elevation gradients of species‐density: historical and prospective views , 2001 .

[66]  J. Grossman,et al.  Grasslands of Brazil. , 1965 .

[67]  W. Köppen,et al.  Grundriss der Klimakunde , 1931 .