Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems
暂无分享,去创建一个
[1] Joseph E. Flaherty,et al. Error Estimation for Discontinuous Galerkin Solutions of Two-Dimensional Hyperbolic Problems , 2003, Adv. Comput. Math..
[2] Bernardo Cockburn. A Simple Introduction to Error Estimation for Nonlinear Hyperbolic Conservation Laws , 1999 .
[3] Chi-Wang Shu,et al. The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.
[4] T. C. Massey. SUPERCONVERGENCE OF DISCONTINUOUS FINITE ELEMENT SOLUTIONS FOR NONLINEAR HYPERBOLIC PROBLEMS , 2022 .
[5] Chi-Wang Shu,et al. Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension , 2010, SIAM J. Numer. Anal..
[6] Richard H. Pletcher,et al. Computational Fluid Mechanics and Heat Transfer , 1984 .
[7] Slimane Adjerid,et al. Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem , 2006 .
[8] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[9] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[10] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[11] T. Weinhart,et al. Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems , 2009 .
[12] R. Pletcher,et al. Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.
[13] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .
[14] Bernardo Cockburn,et al. Error estimates for finite element methods for scalar conservation laws , 1996 .
[15] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[16] Mahboub Baccouch,et al. The Discontinuous Galerkin Method for Two-Dimensional Hyperbolic Problems. Part I: Superconvergence Error Analysis , 2007, J. Sci. Comput..
[17] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[18] Chi-Wang Shu,et al. Superconvergence and time evolution of discontinuous Galerkin finite element solutions , 2008, J. Comput. Phys..
[19] Sylvie Benzoni-Gavage,et al. Multi-dimensional hyperbolic partial differential equations , 2006 .
[20] Mahboub Baccouch,et al. The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation , 2009, J. Sci. Comput..
[21] Slimane Adjerid,et al. A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems , 2002 .
[22] Timothy J. Barth,et al. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .
[23] Yingda Cheng,et al. Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations , 2009 .
[24] Uriel G. Rothblum,et al. A Representation of the Drazin Inverse and Characterizations of the Index , 1976 .
[25] Karen Dragon Devine,et al. A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .
[26] Mahboub Baccouch,et al. Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem , 2010 .