Asymmetric copula in multivariate flood frequency analysis

Abstract The univariate flood frequency analysis is widely used in hydrological studies. Often only flood peak or flood volume is statistically analyzed. For a more complete analysis the three main characteristics of a flood event i.e. peak, volume and duration are required. To fully understand these variables and their relationships, a multivariate statistical approach is necessary. The main aim of this paper is to define the trivariate probability density and cumulative distribution functions. When the joint distribution is known, it is possible to define the bivariate distribution of volume and duration conditioned on the peak discharge. Consequently volume–duration pairs, statistically linked to peak values, become available. The authors build trivariate joint distribution of flood event variables using the fully nested or asymmetric Archimedean copula functions. They describe properties of this copula class and perform extensive simulations to highlight differences with the well-known symmetric Archimedean copulas. They apply asymmetric distributions to observed flood data and compare the results those obtained using distributions built with symmetric copula and the standard Gumbel Logistic model.

[1]  Yanqin Fan,et al.  Simple Tests for Models of Dependence between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates , 2004 .

[2]  Gianfranco Becciu,et al.  Bivariate exponential model applied to intensities and durations of extreme rainfall , 1994 .

[3]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[4]  C. De Michele,et al.  A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .

[5]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[6]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[7]  Satish Chandra,et al.  Multivariate modeling of flood flows , 1998 .

[8]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[9]  Sheng Yue,et al.  Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls , 2000 .

[10]  C. Kimberling A probabilistic interpretation of complete monotonicity , 1974 .

[11]  Francesco Napolitano,et al.  A 3-copula function application for design hyetograph analysis , 2005 .

[12]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[13]  R. Nelsen An Introduction to Copulas , 1998 .

[14]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[15]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[16]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[17]  E. J. Gumbel,et al.  Some Analytical Properties of Bivariate Extremal Distributions , 1967 .

[18]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[19]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[20]  C. Y. Wang,et al.  A comparison of two bivariate extreme value distributions , 2004 .

[21]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[22]  E. Luciano,et al.  Copula methods in finance , 2004 .

[23]  Sheng Yue,et al.  A bivariate gamma distribution for use in multivariate flood frequency analysis , 2001 .

[24]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[25]  Sheng Yue,et al.  The Gumbel logistic model for representing a multivariate storm event , 2000 .

[26]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[27]  Renzo Rosso,et al.  Bivariate Statistical Approach to Check Adequacy of Dam Spillway , 2005 .

[28]  S. Yue The bivariate lognormal distribution to model a multivariate flood episode , 2000 .

[29]  Niall Whelan,et al.  Sampling from Archimedean copulas , 2004 .

[30]  H. Joe Multivariate models and dependence concepts , 1998 .

[31]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[32]  Gianfausto Salvadori,et al.  Frequency analysis via copulas: Theoretical aspects and applications to hydrological events , 2004 .

[33]  Taha B. M. J. Ouarda,et al.  Approach for Describing Statistical Properties of Flood Hydrograph , 2002 .

[34]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[35]  Taha B. M. J. Ouarda,et al.  The Gumbel mixed model for flood frequency analysis , 1999 .