Estimating the Laplace‐Beltrami Operator by Restricting 3D Functions

We present a novel approach for computing and solving the Poisson equation over the surface of a mesh. As in previous approaches, we define the Laplace‐Beltrami operator by considering the derivatives of functions defined on the mesh. However, in this work, we explore a choice of functions that is decoupled from the tessellation. Specifically, we use basis functions (second‐order tensor‐product B‐splines) defined over 3D space, and then restrict them to the surface. We show that in addition to being invariant to mesh topology, this definition of the Laplace‐Beltrami operator allows a natural multiresolution structure on the function space that is independent of the mesh structure, enabling the use of a simple multigrid implementation for solving the Poisson equation.

[1]  Michael Griebel,et al.  Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods , 2006, Numer. Linear Algebra Appl..

[2]  Holly E. Rushmeier,et al.  The 3D Model Acquisition Pipeline , 2002, Comput. Graph. Forum.

[3]  Jacob K. White,et al.  Multiscale Bases for the Sparse Representation of Boundary Integral Operators on Complex Geometry , 2002, SIAM J. Sci. Comput..

[4]  A. Mayo The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions , 1984 .

[5]  Paolo Cignoni,et al.  Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models , 2008, Comput. Graph..

[6]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[7]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[8]  Michael F. Cohen,et al.  Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems , 2008, ECCV.

[9]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[10]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[11]  Mark S. Drew,et al.  Removing Shadows from Images , 2002, ECCV.

[12]  Barry Smith,et al.  Multigrid and multilevel methods for quadratic spline collocation , 1997 .

[13]  David Salesin,et al.  Interactive digital photomontage , 2004, ACM Trans. Graph..

[14]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[15]  Bruno Lévy,et al.  Hierarchical least squares conformal map , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[16]  Lin Shi,et al.  A fast multigrid algorithm for mesh deformation , 2006, SIGGRAPH 2006.

[17]  K. Hohn,et al.  Determining Lightness from an Image , 2004 .

[18]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[19]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[20]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[21]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[22]  Michael Garland,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..

[23]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[24]  Shmuel Peleg,et al.  Seamless Image Stitching in the Gradient Domain , 2004, ECCV.

[25]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[26]  James Davis,et al.  Mosaics of scenes with moving objects , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[27]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[28]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..

[29]  Chen Xu,et al.  A System for Reconstructing Integrated Texture Maps for Large Structures , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[30]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[31]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[32]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[33]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[34]  D. Bartuschat Algebraic Multigrid , 2007 .

[35]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[36]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[37]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[38]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[39]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[40]  Wei-Wen Feng,et al.  A fast multigrid algorithm for mesh deformation , 2006, ACM Trans. Graph..

[41]  Mark A. Taylor,et al.  Asymmetric cubature formulas for polynomial integration in the triangle and square , 2008 .

[42]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[43]  Kun Zhou,et al.  Mesh quilting for geometric texture synthesis , 2006, ACM Trans. Graph..

[44]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[45]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[46]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[47]  Frédo Durand,et al.  Two-scale tone management for photographic look , 2006, ACM Trans. Graph..