Stabilized Mixed Finite Element Methods for Linear Elasticity on Simplicial Grids in ℝn

Abstract In this paper, we design two classes of stabilized mixed finite element methods for linear elasticity on simplicial grids. In the first class of elements, we use 𝑯 ⁢ ( div , Ω ; 𝕊 ) ${\boldsymbol{H}(\operatorname{div},\Omega;\mathbb{S})}$ - P k ${P_{k}}$ and 𝑳 2 ⁢ ( Ω ; ℝ n ) ${\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{n})}$ - P k - 1 ${P_{k-1}}$ to approximate the stress and displacement spaces, respectively, for 1 ≤ k ≤ n ${1\leq k\leq n}$ , and employ a stabilization technique in terms of the jump of the discrete displacement over the edges/faces of the triangulation under consideration; in the second class of elements, we use 𝑯 0 1 ⁢ ( Ω ; ℝ n ) ${\boldsymbol{H}_{0}^{1}(\Omega;\mathbb{R}^{n})}$ - P k ${P_{k}}$ to approximate the displacement space for 1 ≤ k ≤ n ${1\leq k\leq n}$ , and adopt the stabilization technique suggested by Brezzi, Fortin, and Marini [19]. We establish the discrete inf-sup conditions, and consequently present the a priori error analysis for them. The main ingredient for the analysis are two special interpolation operators, which can be constructed using a crucial 𝑯 ⁢ ( div ) ${\boldsymbol{H}(\operatorname{div})}$ bubble function space of polynomials on each element. The feature of these methods is the low number of global degrees of freedom in the lowest order case. We present some numerical results to demonstrate the theoretical estimates.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Xuehai Huang,et al.  The $hp$-version Error Analysis of A Mixed DG Method for Linear Elasticity , 2016 .

[3]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[4]  F. Valentin,et al.  A HYBRID-MIXED METHOD FOR ELASTICITY ∗ , 2016 .

[5]  Jay Gopalakrishnan,et al.  A Second Elasticity Element Using the Matrix Bubble , 2012 .

[6]  Shuonan Wu,et al.  Mixed Finite Elements of Any Order in Any Dimension for Linear Elasticity with Strongly Symmetric Stress Tensor , 2015 .

[7]  Son-Young Yi Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions , 2005 .

[8]  Daniele Boffi,et al.  Three-Dimensional Finite Element Methods for the Stokes Problem , 1997 .

[9]  Jun-Jue Hu,et al.  LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .

[10]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[11]  Ruishu Wang,et al.  A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation , 2015, J. Comput. Appl. Math..

[12]  Shaochun Chen,et al.  Conforming Rectangular Mixed Finite Elements for Elasticity , 2011, J. Sci. Comput..

[13]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[14]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[15]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[16]  Z. Cai,et al.  A mixed nonconforming finite element for linear elasticity , 2005 .

[17]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[18]  L. Demkowicz,et al.  Mixed hp-Finite Element Method for Linear Elasticity with Weakly Imposed Symmetry: Stability Analysis , 2009, SIAM J. Numer. Anal..

[19]  L. D. Marini,et al.  MIXED FINITE ELEMENT METHODS WITH CONTINUOUS STRESSES , 1993 .

[20]  Jinchao Xu,et al.  The Lowest Order Interior Penalty Nonconforming Finite Element Methods for Linear Elasticity , 2015 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Douglas N. Arnold,et al.  Mixed Methods for Elastodynamics with Weak Symmetry , 2013, SIAM J. Numer. Anal..

[23]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[24]  Ke Shi,et al.  An HDG method for linear elasticity with strong symmetric stresses , 2013, Math. Comput..

[25]  Bernardo Cockburn,et al.  Superconvergent HDG methods for linear elasticity with weakly symmetric stresses , 2013 .

[26]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[27]  Jay Gopalakrishnan,et al.  Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..

[28]  Bernardo Cockburn,et al.  A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..

[29]  Shangyou Zhang,et al.  A family of conforming mixed finite elements for linear elasticity on triangular grids , 2014, 1406.7457.

[30]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[31]  Claes Johnson,et al.  Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .

[32]  Gerard Awanou Two Remarks on Rectangular Mixed Finite Elements for Elasticity , 2012, J. Sci. Comput..

[33]  Bernardo Cockburn,et al.  A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..

[34]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[35]  Jun Hu,et al.  Lower Order Rectangular Nonconforming Mixed Finite Elements for Plane Elasticity , 2007, SIAM J. Numer. Anal..

[36]  Weifeng Qiu,et al.  Mixed hp-Finite Element Method for Linear Elasticity with Weakly Imposed Symmetry: Stability Analysis , 2011, SIAM J. Numer. Anal..

[37]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[38]  Jun-Jue Hu,et al.  A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids , 2014, 1407.4190.

[39]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[40]  Yuncheng Chen,et al.  On the Local Discontinuous Galerkin Method for Linear Elasticity , 2010 .

[41]  Rommel Bustinza,et al.  A note on the local discontinuous Galerkin method for linear problems in elasticity , 2006 .

[42]  Shangyou Zhang,et al.  A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension , 2013, Journal of Scientific Computing.

[43]  Jun-Jue Hu,et al.  Finite element approximations of symmetric tensors on simplicial grids in Rn: the lower order case , 2014 .

[44]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[45]  Jinchao Xu,et al.  New mixed finite elements for plane elasticity and Stokes equations , 2011 .

[46]  Jun-Jue Hu Finite Element Approximations of Symmetric Tensors on Simplicial Grids in R n : The Higher Order Case , 2015 .

[47]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[48]  Xuehai Huang,et al.  A Reduced Local Discontinuous Galerkin Method for Nearly Incompressible Linear Elasticity , 2013 .

[49]  B. J. Hartz,et al.  An equilibrium stress field model for finite element solutions of two-dimensional elastostatic problems , 1968 .

[50]  Gang Chen,et al.  A Robust Weak Galerkin Finite Element Method for Linear Elasticity with Strong Symmetric Stresses , 2016, Comput. Methods Appl. Math..

[51]  J. Thomas,et al.  Equilibrium finite elements for the linear elastic problem , 1979 .

[52]  D. Arnold,et al.  NONCONFORMING TETRAHEDRAL MIXED FINITE ELEMENTS FOR ELASTICITY , 2012, 1210.6256.

[53]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[54]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[55]  Bernardo Cockburn,et al.  Discontinuous Galerkin methods for incompressible elastic materials , 2006 .

[56]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[57]  Johnny Guzmán A Unified Analysis of Several Mixed Methods for Elasticity with Weak Stress Symmetry , 2010, J. Sci. Comput..

[58]  W. Marsden I and J , 2012 .

[59]  Jun Hu,et al.  A New Family of Efficient Conforming Mixed Finite Elements on Both Rectangular and Cuboid Meshes for Linear Elasticity in the Symmetric Formulation , 2013, SIAM J. Numer. Anal..

[60]  M. E. Morley A family of mixed finite elements for linear elasticity , 1989 .

[61]  Son-Young Yi A NEW NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY , 2006 .

[62]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[63]  Daniele Boffi,et al.  STABILITY OF HIGHER ORDER TRIANGULAR HOOD-TAYLOR METHODS FOR THE STATIONARY STOKES EQUATIONS , 1994 .

[64]  Jianguo Huang,et al.  The Compact Discontinuous Galerkin Method for Nearly Incompressible Linear Elasticity , 2013, J. Sci. Comput..