Computation of the Normalized Compression Distance of DNA Sequences using a Mixture of Finite-context Models
暂无分享,去创建一个
[1] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[2] Trevor I. Dix,et al. A Simple Statistical Algorithm for Biological Sequence Compression , 2007, 2007 Data Compression Conference (DCC'07).
[3] Armando J. Pinho,et al. Compressing the Human Genome Using Exclusively Markov Models , 2011, PACBB.
[4] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..
[5] Armando J. Pinho,et al. Symbolic to numerical conversion of DNA sequences using finite-context models , 2011, 2011 19th European Signal Processing Conference.
[6] Bin Ma,et al. The similarity metric , 2001, IEEE Transactions on Information Theory.
[7] Trevor I. Dix,et al. Comparative analysis of long DNA sequences by per element information content using different contexts , 2007, BMC Bioinformatics.
[8] Péter Gács,et al. Information Distance , 1998, IEEE Trans. Inf. Theory.
[9] Abraham Lempel,et al. On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.
[10] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.
[11] Ming Li,et al. Clustering by compression , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[12] Armando J. Pinho,et al. Bacteria DNA sequence compression using a mixture of finite-context models , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).
[13] Goren Gordon. Multi-dimensional Linguistic Complexity , 2003, Journal of biomolecular structure & dynamics.