Bäcklund transformation of partial differential equations from the Painlevé–Gambier classification. I. Kaup–Kupershmidt equation

Among the 50 nonlinear second-order differential equations of Painleve and Gambier, those which are linearizable provide a natural scheme for deriving the Lax pair and the Darboux transformation of a nonlinear partial differential equation when the order of the scattering problem is three. This new method allows one to obtain, from singularity analysis only, the Backlund transformation of the Kaup–Kupershmidt equation, a result which was missing until now.

[1]  Vladimir E. Zakharov,et al.  On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .

[2]  G. Soliani,et al.  Nonlinear Evolution Equations and Dynamical Systems , 1980 .

[3]  Ryogo Hirota,et al.  A Simple Structure of Superposition Formula of the Bäcklund Transformation , 1978 .

[4]  A. Pickering The singular manifold method revisited , 1996 .

[5]  Pierre C. Sabatier Inverse Methods in Action , 1990 .

[6]  D. Levi,et al.  Non-isospectral deformations and Darboux transformations for the third-order spectral problem , 1988 .

[7]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[8]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[9]  Robert Conte,et al.  The Painlevé property : one century later , 1999 .

[10]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[11]  J. Chazy,et al.  Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .

[12]  Colin Rogers,et al.  Bäcklund transformations and their applications , 1982 .

[13]  Robert Conte,et al.  Invariant Painlevé analysis of partial differential equations , 1989 .

[14]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[15]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[16]  R. Anderson,et al.  Systems of ordinary differential equations with nonlinear superposition principles , 1982 .

[17]  P. Caudrey,et al.  The inverse problem for the third order equation uxxx + q(x)ux + r(x)u = −iζ3u , 1980 .

[18]  Allan P. Fordy,et al.  Some remarkable nonlinear transformations , 1980 .

[19]  M. Musette Painlevé Analysis for Nonlinear Partial Differential Equations , 1999 .

[20]  R. Conte,et al.  The two-singular-manifold method: I. Modified Korteweg-de Vries and sine-Gordon equations , 1994 .

[21]  Colin Rogers,et al.  On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies , 1987 .

[22]  R. Hirota,et al.  Nonlinear Evolution Equations Generated from the Bäcklund Transformation for the Boussinesq Equation , 1977 .

[23]  R. Conte,et al.  Linearity inside nonlinearity: exact solutions to the complex Ginzburg-Landau equation , 1993 .

[24]  H. Morris Prolongation structures and a generalized inverse scattering problem , 1976 .

[25]  J. Weiss The Painlevé property and Bäcklund transformations for the sequence of Boussinesq equations , 1985 .

[26]  P. Painlevé,et al.  Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .

[27]  R. Conte,et al.  The two-singular manifold method: II. Classical Boussinesq system , 1995 .

[28]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[29]  J. Weiss,et al.  On classes of integrable systems and the Painlevé property , 1984 .

[30]  David J. Kaup,et al.  A Bäcklund Transformation for a Higher Order Korteweg-De Vries Equation , 1977 .

[31]  J. Weiss THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .

[32]  Hsing‐Hen Chen General Derivation of Bäcklund Transformations from Inverse Scattering Problems , 1974 .

[33]  Micheline Musette,et al.  Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations , 1991 .

[34]  B. Gambier,et al.  Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .