Role of the Na+ ion on phenol derivatives/hydroxypropyl-beta-cyclodextrin complex formation on porous graphitic carbon phase.

[1]  A. Benvenuti,et al.  Temperature effect on HPLC retention of PCBs on porous graphitic carbon , 2000 .

[2]  Clarot,et al.  Elution characteristics of natural cyclodextrins on porous graphitic carbon , 2000, Journal of chromatographic science.

[3]  D. Armstrong,et al.  Effect of temperature on retention of enantiomers of beta-methyl amino acids on a teicoplanin chiral stationary phase. , 1998, Journal of chromatography. A.

[4]  P. Zarzycki,et al.  Evidences for temperature-dependent mechanism of host-guest complexation , 1998 .

[5]  Y. Guillaume,et al.  Retention mechanism study of imidazole derivatives on a beta-cyclodextrin-bonded stationary phase. Thermal analysis contributions. , 1998, Analytical chemistry.

[6]  Y. Guillaume,et al.  Peculiarities of an imidazole derivative retention mechanism in reversed-phase liquid chromatography: β-cyclodextrin concentration and temperature considerations , 1998 .

[7]  Y. Guillaume,et al.  Interactions between dansyl amino acids and human serum albumin using high-performance liquid chromatography: mobile-phase pH and temperature considerations. , 1997, Analytical chemistry.

[8]  C. Guinchard,et al.  New Statistical Approach to a Gas Chromatography Retention Model: Application to Dichlorophenol Isomers , 1997 .

[9]  Y. Guillaume,et al.  A new approach to study benzodiazepine separation and the differences between a methanol/water and acetonitrile/water mixture on column efficiency in liquid chromatography , 1997 .

[10]  M. Hennion,et al.  Retention behaviour of polar compounds using porous graphitic carbon with water-rich mobile phases , 1995 .

[11]  Y. Yano,et al.  Differential interactions of cyclodextrins with hydrophobic derivatives of sepharose CL-4B , 1995 .

[12]  M. Davies,et al.  Chromatographic behaviour of positional isomers on porous graphitic carbon , 1995 .

[13]  G. Guiochon,et al.  Elution Mechanisms of Cyclodextrins in Reversed Phase Chromatography , 1995 .

[14]  M. Jung,et al.  Chiral capillary HPLC and HPLC-MS: New applications of chemically bonded β-cyclodextrin as stationary phase , 1995 .

[15]  K. Harata,et al.  Crystal structure of 6-O-[(R)-2-hydroxypropyl]cyclomaltoheptaose and 6-O-[(S)-2-hydroxypropyl]cyclomaltoheptaose. , 1993, Carbohydrate research.

[16]  C. Roussel,et al.  γ‐Cyclodextrin as chiral mobile phase additive in the HPLC separation of the atropisomers of some N‐arylthiazoline‐2‐thiones and N‐arylthiazoline‐2‐ones: Attempts to quantify the effect of selected structural parameters , 1993 .

[17]  E. Forgács,et al.  Dependence of the retention of some barbituric acid derivatives on a porous graphitized carbon column on their physicochemical parameters. , 1992, Journal of pharmaceutical and biomedical analysis.

[18]  K. Dill,et al.  Temperature dependence of retention in reversed-phase liquid chromatography. 2. Mobile-phase considerations. , 1992, Analytical chemistry.

[19]  K. Koizumi,et al.  High-performance liquid chromatography of mono- and oligo-saccharides on a graphitized carbon column , 1991 .

[20]  R. J. Hurtubise,et al.  Retention characteristics of several compound classes in reversed-phase liquid chromatography with β-cyclodextrin as a mobile phase modifier , 1990 .

[21]  D. Armstrong,et al.  Evaluation of the liquid chromatographic separation of monosaccharides, disaccharides, trisaccharides, tetrasaccharides, deoxysaccharides and sugar alcohols with stable cyclodextrin bonded phase columns. , 1989, Journal of chromatography.

[22]  K. Street Cyclodextrin cavity polarity and chromatographic implications , 1987 .

[23]  J. Jurczak,et al.  Resolution of ortho, meta, and para isomers of some disubstituted benzene derivatives via .alpha.- and .beta.-cyclodextrin inclusion complexes, using reversed-phase high-performance liquid chromatography , 1985 .

[24]  D. Armstrong,et al.  Liquid Chromatographic Separation of Diastereomers and Structural Isomers on Cyclodextrin-Bonded Phases , 1985 .

[25]  J. Kraak,et al.  The applicability of liquid—liquid systems in high-performance liquid chromatography , 1983 .

[26]  J. Szejtli Cyclodextrins and their inclusion complexes , 1982 .

[27]  A. V. Kiselev,et al.  Physico-chemical applications of liquid chromatography II. Investigations of the surface properties of chemically modified silica gels and of the adsorption of cardiac glycosides from solutions , 1981 .

[28]  L. Snyder,et al.  Mechanism of solute retention in liquid—solid chromatography and the role of the mobile phase in affecting separation , 1980 .

[29]  C. Horváth,et al.  High-Performance Liquid Chromatography: Advances and Perspectives , 1980 .

[30]  Y. Matsui,et al.  Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution. , 1979 .

[31]  C. Horváth,et al.  Enthalpy—entropy compensation in reversed-phase chromatography , 1978 .

[32]  W. G. Hunter,et al.  Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect , 1976 .

[33]  W. G. Hunter,et al.  Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data , 1976 .

[34]  W. G. Hunter,et al.  Statistical interpretation of enthalpy–entropy compensation , 1976, Nature.

[35]  J. Knox,et al.  The performance of packings in high-speed liquid chromatography , 1973 .