Towards flexible medical instruments: Review of flexible fluidic actuators

Abstract Flexible instruments, i.e. instruments presenting a great number of degrees of freedom and able to perform snake-like movements when avoiding obstacles, can find a lot of applications in the medical field. On the other hand, flexible fluidic actuators, i.e. actuators having a flexible inflatable structure and actuated by fluid, present interesting features regarding medical applications. Therefore, this paper proposes to use these actuators to develop medical flexible instruments. Firstly, the advantages and drawbacks linked to the use of flexible fluidic actuators are listed and a discussion about the miniaturization of fluidic actuators peripherics (such as valves) is led. Next, a literature review of the existing flexible fluidic actuators is established. It can serve as basis to develop flexible instruments based on these actuators.

[1]  M. Mack,et al.  Initial prospective multicenter clinical trial of robotically-assisted coronary artery bypass grafting. , 2001, The Annals of thoracic surgery.

[2]  Jian Ruan,et al.  Research on novel flexible pneumatic actuator FPA , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[3]  Dominiek Reynaerts,et al.  Production and characterization of a hydraulic microactuator , 2005 .

[4]  Blake Hannaford,et al.  Artificial Muscles : Actuators for Biorobotic Systems , 1999 .

[5]  S. T. Smith,et al.  Sensor and actuator considerations for precision, small machines: a review , 2005 .

[6]  Toshiro Noritsugu,et al.  Development of Pneumatic Rotary Soft Actuator Made of Silicone Rubber , 2001, J. Robotics Mechatronics.

[7]  Koichi Suzumori,et al.  Elastic materials producing compliant robots , 1996, Robotics Auton. Syst..

[8]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[9]  Koichi Suzumori,et al.  Integrated flexible microactuator systems , 1996, Robotica.

[10]  Dong-Woo Cho,et al.  Development of a micro-bellows actuator using micro-stereolithography technology , 2006 .

[11]  Guillaume Thomann Contribution à la chirurgie minimalement invasive : conception d'un coloscope intelligent , 2003 .

[12]  A Ruzzu,et al.  Positioning system for catheter tips based on an active microvalve system , 1998 .

[13]  Satoshi Konishi,et al.  Merging micro and macro robotics toward micro manipulation for biomedical operation , 2005 .

[14]  Shinichi Hirai,et al.  Prototyping pneumatic group actuators composed of multiple single-motion elastic tubes , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[15]  Koji Ikuta,et al.  Micro hydrodynamic actuated multiple segments catheter for safety minimally invasive therapy , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[16]  David M. Lane,et al.  3D force control system design for a hydraulic parallel bellows continuum actuator , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[17]  S. SCHULZ,et al.  A new ultralight anthropomorphic hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[18]  D. Sallé Conception optimale d'instruments robotisés à haute mobilité pour la chirurgie mini-invasive , 2004 .

[19]  Chang-Jin Kim,et al.  Pneumatically driven microcage for micro-objects in biological liquid , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[20]  Frank Tendick,et al.  Workspace analysis of robotic manipulators for a teleoperated suturing task , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[21]  Chang-Jin Kim,et al.  Characterization of Balloon-Jointed Micro-Fingers , 2003 .

[22]  S. Konishi,et al.  Thin flexible end-effector using pneumatic balloon actuator , 2000 .

[23]  Y. Muyari Development of Hydraulic Suction Type Active Catheter Using Super Elastic Alloy Tube , 2003 .

[24]  G. Honderd,et al.  A hydraulic forceps with force-feedback for use in minimally invasive surgery , 1996 .

[25]  Koichi Suzumori,et al.  Microfabrication of integrated FMAS using stereo lithography , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[26]  Andrea Manuello Bertetto,et al.  A Novel Fluidic Bellows Manipulator , 2004, J. Robotics Mechatronics.

[27]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[28]  Satoshi Konishi,et al.  Pneumatic micro hand and miniaturized parallel link robot for micro manipulation robot system , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[29]  H. Tanaka,et al.  Applying a flexible microactuator to robotic mechanisms , 1992, IEEE Control Systems.

[30]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[31]  Shujiro Dohta,et al.  718 Application of a Flexible Strain Sensor to a Pneumatic Rubber Hand , 2000 .

[32]  Koichi Suzumori,et al.  Flexible microactuator for miniature robots , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[33]  Koichi Suzumori,et al.  Fiberless flexible microactuator designed by finite-element method , 1997 .

[34]  Gustavo Belforte,et al.  SENSOR DESIGN, IDENTIFICATION AND CONTROL OF A DEFORMABLE PNEUMATIC ACTUATOR , 2003 .