Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition

Using classical molecular dynamics simulations, we have investigated the growth of {111} Cu on Nb {110} surface. Our results reveal that the deposited Cu layer initially grows as body-centered cubic (bcc) and Vernier misfits are observed in the interface of bcc Cu and bcc Nb. As it continues to grow, the bcc Cu {110} transforms into face-centered cubic (fcc) Cu {111}. The phase transition starts after the bcc Cu layer has accumulated about 3 monolayers and is finished depending on deposition parameters. Nuclei of fcc Cu {111} form in the top surface of Cu and grow in plane and toward the interface. Partial dislocations in the fcc Cu layer nucleate during the late stage of the transition, and the stacking faults grow as the Cu layer thickens.

[1]  Richard G. Hoagland,et al.  On the strengthening effects of interfaces in multilayer fee metallic composites , 2002 .

[2]  M. Demkowicz,et al.  Structure of Kurdjumov-Sachs interfaces in simulations of a copper-niobium bilayer , 2008 .

[3]  M. Nastasi,et al.  Formation of misfit dislocations in nanoscale Ni–Cu bilayer films , 2004 .

[4]  J. Hirth,et al.  On the role of weak interfaces in blocking slip in nanoscale layered composites , 2006 .

[5]  Bauer,et al.  hcp and bcc Cu and Pd Films. , 1996, Physical review letters.

[6]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[7]  P. Anderson,et al.  Transmission of a screw dislocation across a coherent, slipping interface , 2006 .

[8]  R. Hoagland,et al.  Thermal stability of self-supported nanolayered Cu/Nb films , 2004 .

[9]  H. Wadley,et al.  Atomistic simulations of low energy ion assisted vapor deposition of metal multilayers , 2000 .

[10]  C. Henager,et al.  Interactions of dislocations with disconnections in fcc metallic nanolayered materials , 2004 .

[11]  R. A. Johnson,et al.  Analytic embedded atom method model for bcc metals , 1989 .

[12]  Han-Chen Huang,et al.  Novel deformation mechanism of twinned nanowires , 2006 .

[13]  P. Anderson,et al.  A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface , 2001 .

[14]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[15]  Amit Misra,et al.  Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites , 1998 .

[16]  Han-Chen Huang,et al.  Shockley partial dislocations to twin: Another formation mechanism and generic driving force , 2004 .

[17]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[18]  C. Henager,et al.  Slip resistance of interfaces and the strength of metallic multilayer composites , 2004 .

[19]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[20]  M. Demkowicz,et al.  Interfaces Between Dissimilar Crystalline Solids , 2008 .

[21]  J. Hirth,et al.  Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers , 2004 .

[22]  S. Barnett,et al.  Structure and Strength of Multilayers , 1999 .

[23]  T. Cale,et al.  Diffusion barriers on Cu surfaces and near steps , 2004 .

[24]  J. B. Adams,et al.  EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt , 1991 .

[25]  Arthur F. Voter,et al.  Accurate Interatomic Potentials for Ni, Al and Ni3Al , 1986 .

[26]  Surface kinetics: Step-facet barriers , 2003 .

[27]  M. Nastasi,et al.  Observation of body centered cubic Cu in Cu/Nb nanolayered composites , 1997 .

[28]  Hanchen Huang,et al.  Growth of Y-shaped nanorods through physical vapor deposition. , 2005, Nano letters.

[29]  Amit Misra,et al.  Rolling textures in nanoscale Cu/Nb multilayers , 2003 .