Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation

Abstract This paper proposes an approach based on the Galerkin weak form and moving least squares (MLS) approximation to simulate three space dimensional nonlinear wave equation of the form u tt + α u t + β u = u xx + u yy + u zz + δ g ( u ) u t + f ( x , y , z , t ) , 0 x , y , z 1 , t > 0 subject to given appropriate initial and Dirichlet boundary conditions. The main difficulty of methods in fully three-dimensional problems is the large computational costs. In the proposed method, which is a kind of Meshless local Petrov–Galerkin (MLPG) method, meshless Galerkin weak form is applied to the interior nodes while the meshless collocation method is used for the nodes on the boundary, so the Dirichlet boundary condition is imposed directly. In MLPG method, it does not require any background integration cells so that all integrations are carried out locally over small quadrature domains of regular shapes, such as circles or squares in two dimensions and spheres or cubes in three dimensions. The moving least squares approximation is proposed to construct shape functions. A two-step time discretization method is employed to approximate the time derivatives. To treat the nonlinearity, a kind of predictor–corrector scheme combined with one-step time discretization and Crank–Nicolson technique is adopted. Several numerical examples are presented and satisfactory agreements are achieved.

[1]  F. J. Seabra-Santos,et al.  A Petrov–Galerkin finite element scheme for the regularized long wave equation , 2004 .

[2]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[3]  Baodong Dai,et al.  AN IMPROVED LOCAL BOUNDARY INTEGRAL EQUATION METHOD FOR TWO-DIMENSIONAL POTENTIAL PROBLEMS , 2010 .

[4]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[5]  Elyas Shivanian,et al.  Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics , 2013 .

[6]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[7]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[8]  Vladimir Sladek,et al.  A local integral equation formulation to solve coupled nonlinear reaction–diffusion equations by using moving least square approximation , 2013 .

[9]  R. J. Astley,et al.  The partition of unity finite element method for short wave acoustic propagation on non‐uniform potential flows , 2006 .

[10]  Mehdi Dehghan,et al.  A method based on meshless approach for the numerical solution of the two‐space dimensional hyperbolic telegraph equation , 2012 .

[11]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[12]  R. K. Mohanty,et al.  A new off-step high order approximation for the solution of three-space dimensional nonlinear wave equations , 2013 .

[13]  YuanTong Gu,et al.  A boundary point interpolation method for stress analysis of solids , 2002 .

[14]  Yumin Cheng,et al.  The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems , 2011 .

[15]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[16]  R. K. Mohanty,et al.  A new high order space derivative discretization for 3D quasi-linear hyperbolic partial differential equations , 2014, Appl. Math. Comput..

[17]  K. M. Liew,et al.  Numerical study of the three-dimensional wave equation using the mesh-free kp-Ritz method , 2013 .

[18]  Guirong Liu,et al.  Point interpolation method based on local residual formulation using radial basis functions , 2002 .

[19]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[20]  Saeid Abbasbandy,et al.  Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function , 2012 .

[21]  YuanTong Gu,et al.  A BOUNDARY RADIAL POINT INTERPOLATION METHOD (BRPIM) FOR 2-D STRUCTURAL ANALYSES , 2003 .

[22]  Mehdi Dehghan,et al.  The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation , 2008 .

[23]  Carlos J. S. Alves,et al.  Numerical comparison of two meshfree methods for acoustic wave scattering , 2005 .

[24]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[25]  P. Bouillard,et al.  A wave-oriented meshless formulation for acoustical and vibro-acoustical applications , 2004 .

[26]  Paul W. Cleary,et al.  Modelling confined multi-material heat and mass flows using SPH , 1998 .

[27]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[28]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[29]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[30]  K. Liew,et al.  The improved element-free Galerkin method for three-dimensional wave equation , 2012 .

[31]  Pei Liu,et al.  THE COMPLEX VARIABLE ELEMENT-FREE GALERKIN (CVEFG) METHOD FOR TWO-DIMENSIONAL ELASTICITY PROBLEMS , 2009 .

[32]  R. K. Mohanty,et al.  Fourth‐order approximation for the three space dimensional certain mildly quasi‐linear hyperbolic equation , 2001 .

[33]  S. Abbasbandy,et al.  A meshless method for two-dimensional diffusion equation with an integral condition , 2010 .

[34]  Satya N. Atluri,et al.  A Meshless Local Petrov-Galerkin (MLPG) Approach for 3-Dimensional Elasto-dynamics , 2004 .

[35]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[36]  K. Liew,et al.  The improved element-free Galerkin method for two-dimensional elastodynamics problems , 2013 .

[37]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[38]  R. K. Mohanty,et al.  An Unconditionally Stable ADI Method for the Linear Hyperbolic Equation in Three Space Dimensions , 2002, Int. J. Comput. Math..

[39]  G. Y. Li,et al.  A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation , 2006 .

[40]  Satya N. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics , 2000 .

[41]  Li Guangyao,et al.  A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem , 2006 .

[42]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[43]  Pihua Wen,et al.  Meshless local Petrov–Galerkin (MLPG) method for wave propagation in 3D poroelastic solids , 2010 .

[44]  S. Abbasbandy,et al.  MLPG method for two-dimensional diffusion equation with Neumann's and non-classical boundary conditions , 2011 .

[45]  YuanTong Gu,et al.  A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids , 2001 .

[46]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[47]  Yumin Cheng,et al.  The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems , 2011 .

[48]  S. Abbasbandy,et al.  Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations , 2012 .

[49]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[50]  Jianfeng Wang,et al.  An improved complex variable element-free Galerkin method for two-dimensional elasticity problems , 2012 .

[51]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[52]  Mehdi Dehghan,et al.  A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation , 2012 .

[53]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[54]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[55]  Mehdi Dehghan,et al.  Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation , 2010 .

[56]  Mohammad Shekarchi,et al.  A Multiresolution Prewavelet-Based Adaptive Refinement Scheme for RBF Approximations of Nearly Singular Problems , 2009 .

[57]  Mohammad Shekarchi,et al.  A Fast Adaptive Wavelet scheme in RBF Collocation for nearly singular potential PDEs , 2008 .

[58]  M. K. Jain,et al.  High accuracy difference schemes for a class of singular three space dimensional hyperbolic equations , 1995, Int. J. Comput. Math..

[59]  A. G. Bratsos An improved numerical scheme for the sine‐Gordon equation in 2+1 dimensions , 2008 .

[60]  Ewald Krämer,et al.  A New Meshless Collocation Method for Partial Differential Equations , 2011 .

[61]  M. Dehghan A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications , 2006 .

[62]  Yumin Cheng,et al.  A boundary element-free method (BEFM) for two-dimensional potential problems , 2009 .

[63]  R. K. Mohanty New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations , 2009, Int. J. Comput. Math..

[64]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[65]  Saeid Abbasbandy,et al.  A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation , 2013 .

[66]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[67]  Yan Zhang,et al.  Letter to the Editor: Convergence of FEM with interpolated coefficients for semilinear hyperbolic equation , 2008 .

[68]  Mehdi Dehghan,et al.  On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation , 2005 .

[69]  R. K. Mohanty An operator splitting technique for an unconditionally stable difference method for a linear three space dimensional hyperbolic equation with variable coefficients , 2005, Appl. Math. Comput..

[70]  K. Bathe,et al.  The method of finite spheres , 2000 .