Méthodes de géométrie de l'information pour les modèles de mélange. (Information-geometric methods for mixture models)
暂无分享,去创建一个
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] Darlene R Goldstein,et al. A Laplace mixture model for identification of differential expression in microarray experiments. , 2006, Biostatistics.
[3] Frank Nielsen,et al. Learning Mixtures by Simplifying Kernel Density Estimators , 2013 .
[4] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .
[5] E. Pitman,et al. Sufficient statistics and intrinsic accuracy , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[7] Yali Amit,et al. Generative Models for Labeling Multi-object Configurations in Images , 2006, Toward Category-Level Object Recognition.
[8] John R. Hershey,et al. Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.
[9] Yannick Berthoumieu,et al. K-centroids-based supervised classification of texture images: Handling the intra-class diversity , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[10] B. O. Koopman. On distributions admitting a sufficient statistic , 1936 .
[11] P. Mahalanobis. On the generalized distance in statistics , 1936 .
[12] Felix . Klein,et al. Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .
[13] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[14] V. A. Epanechnikov. Non-Parametric Estimation of a Multivariate Probability Density , 1969 .
[15] Frank Nielsen,et al. Levels of Details for Gaussian Mixture Models , 2009, ACCV.
[16] Arnaud Dessein,et al. Computational Methods of Information Geometry with Real-Time Applications in Audio Signal Processing. (Méthodes Computationnelles en Géométrie de l'Information et Applications Temps Réel au Traitement du Signal Audio) , 2012 .
[17] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[18] T. Morimoto. Markov Processes and the H -Theorem , 1963 .
[19] Sueli I. Rodrigues Costa,et al. Fisher information matrix and hyperbolic geometry , 2005, IEEE Information Theory Workshop, 2005..
[20] Frank Nielsen,et al. Statistical exponential families: A digest with flash cards , 2009, ArXiv.
[21] R. Kass,et al. Geometrical Foundations of Asymptotic Inference , 1997 .
[22] Frank Nielsen,et al. Matrix Information Geometry , 2012 .
[23] Hông Vân Lê,et al. The uniqueness of the Fisher metric as information metric , 2013, 1306.1465.
[24] Geoffrey E. Hinton,et al. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.
[25] F. Jelinek,et al. Continuous speech recognition by statistical methods , 1976, Proceedings of the IEEE.
[26] G. Gal'perin. A concept of the mass center of a system of material points in the constant curvature spaces , 1993 .
[27] Frank Nielsen,et al. k-MLE for mixtures of generalized Gaussians , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).
[28] Alexey Koloydenko,et al. On Adjusted Viterbi Training , 2007 .
[29] Sanjoy Dasgupta,et al. Agglomerative Bregman Clustering , 2012, ICML.
[30] Frank Nielsen,et al. Bregman Voronoi Diagrams , 2007, Discret. Comput. Geom..
[31] José Carlos Príncipe,et al. Closed-form cauchy-schwarz PDF divergence for mixture of Gaussians , 2011, The 2011 International Joint Conference on Neural Networks.
[32] Itay Mayrose,et al. A Gamma mixture model better accounts for among site rate heterogeneity , 2005, ECCB/JBI.
[33] L. R. Haff,et al. Minimax estimation for mixtures of Wishart distributions , 2011, 1203.3342.
[34] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[35] Paolo Piro,et al. Learning prototype-based classification rules in a boosting framework: application to real-world and medical image categorization , 2010 .
[36] J. F. C. Kingman,et al. Information and Exponential Families in Statistical Theory , 1980 .
[37] Robert Jenssen,et al. The Cauchy-Schwarz divergence and Parzen windowing: Connections to graph theory and Mercer kernels , 2006, J. Frankl. Inst..
[38] Richard Nock,et al. On Bregman Voronoi diagrams , 2007, SODA '07.
[39] Michèle Basseville,et al. Divergence measures for statistical data processing - An annotated bibliography , 2013, Signal Process..
[40] Jalal Almhana,et al. A Recursive Algorithm for Gamma Mixture Models , 2006, 2006 IEEE International Conference on Communications.
[41] Mitio Nagumo. Über eine Klasse der Mittelwerte , 1930 .
[42] R. Keener. Curved Exponential Families , 2009 .
[43] Frank Nielsen,et al. Non-flat clustering with alpha-divergences , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[44] Frank Nielsen,et al. The Burbea-Rao and Bhattacharyya Centroids , 2010, IEEE Transactions on Information Theory.
[45] Hongyuan Zha,et al. Computational Statistics Data Analysis , 2021 .
[46] C. R. Rao,et al. On the convexity of some divergence measures based on entropy functions , 1982, IEEE Trans. Inf. Theory.
[47] David Beymer,et al. Closed-Form Jensen-Renyi Divergence for Mixture of Gaussians and Applications to Group-Wise Shape Registration , 2009, MICCAI.
[48] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[49] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[50] Frank Nielsen,et al. A New Implementation of k-MLE for Mixture Modeling of Wishart Distributions , 2013, GSI.
[51] Olivier Schwander,et al. Evaluating Mixture Models for Building RNA Knowledge-Based Potentials , 2012, J. Bioinform. Comput. Biol..
[52] J. Aczél. On mean values , 1948 .
[53] Jean-Philippe Thiran,et al. Lower and upper bounds for approximation of the Kullback-Leibler divergence between Gaussian Mixture Models , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[54] Frank Nielsen,et al. Hyperbolic Voronoi Diagrams Made Easy , 2009, 2010 International Conference on Computational Science and Its Applications.
[55] Frank Nielsen,et al. Model centroids for the simplification of Kernel Density estimators , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[56] R. Gray,et al. Distortion measures for speech processing , 1980 .
[57] Mohand Saïd Allili,et al. Wavelet-Based Texture Retrieval Using a Mixture of Generalized Gaussian Distributions , 2010, 2010 20th International Conference on Pattern Recognition.
[58] Sergio Cruces,et al. Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization , 2011, Entropy.
[59] L. Baum,et al. Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .
[60] L. Brown. Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .
[61] J. Munkres. ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .
[62] A. Bowman. An alternative method of cross-validation for the smoothing of density estimates , 1984 .
[63] Gérard Govaert,et al. Model-based cluster and discriminant analysis with the MIXMOD software , 2006, Comput. Stat. Data Anal..
[64] R. Kass. The Geometry of Asymptotic Inference , 1989 .
[65] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[66] Minh N. Do,et al. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..
[67] Carl E. Rasmussen,et al. The Infinite Gaussian Mixture Model , 1999, NIPS.
[68] Inderjit S. Dhillon,et al. Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..
[69] Frank Nielsen,et al. Bhattacharyya Clustering with Applications to Mixture Simplifications , 2010, 2010 20th International Conference on Pattern Recognition.
[70] Bruno Pelletier,et al. Informative barycentres in statistics , 2005 .
[71] Chong-Sze Tong,et al. Supervised Texture Classification Using Characteristic Generalized Gaussian Density , 2007, Journal of Mathematical Imaging and Vision.
[72] H. Cramér. Mathematical methods of statistics , 1947 .
[73] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[74] S. M. Ali,et al. A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .
[75] M. Rao,et al. Metrics defined by Bregman Divergences , 2008 .
[76] Frank Nielsen,et al. Shape Retrieval Using Hierarchical Total Bregman Soft Clustering , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[77] G. Celeux,et al. A Classification EM algorithm for clustering and two stochastic versions , 1992 .
[78] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[79] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[80] Petia Radeva,et al. Rayleigh Mixture Model for Plaque Characterization in Intravascular Ultrasound , 2011, IEEE Transactions on Biomedical Engineering.
[81] E. Hellinger,et al. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .
[82] Nizar Bouguila,et al. Image and Video Segmentation by Combining Unsupervised Generalized Gaussian Mixture Modeling and Feature Selection , 2010, IEEE Transactions on Circuits and Systems for Video Technology.
[83] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[84] Adelene Y. L. Sim,et al. Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation. , 2011, RNA.
[85] S. Nadarajah. A generalized normal distribution , 2005 .
[86] Frank Nielsen,et al. Closed-form information-theoretic divergences for statistical mixtures , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).
[87] Frank Nielsen,et al. Sided and Symmetrized Bregman Centroids , 2009, IEEE Transactions on Information Theory.
[88] John D. Lafferty,et al. Diffusion Kernels on Statistical Manifolds , 2005, J. Mach. Learn. Res..
[89] Frank Nielsen,et al. K-MLE: A fast algorithm for learning statistical mixture models , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[90] Elena Deza,et al. Encyclopedia of Distances , 2014 .
[91] R. Fisher. Two New Properties of Mathematical Likelihood , 1934 .
[92] Xiaohu Guo,et al. Hyperbolic centroidal Voronoi tessellation , 2010, SPM '10.
[93] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[94] Benjamin Georgi,et al. PyMix - The Python mixture package - a tool for clustering of heterogeneous biological data , 2010, BMC Bioinformatics.
[95] Frank Nielsen,et al. Bregman vantage point trees for efficient nearest Neighbor Queries , 2009, 2009 IEEE International Conference on Multimedia and Expo.
[96] Josep M. Oller,et al. Computing the Rao distance for gamma distributions , 2003 .
[97] M. Fréchet. Sur l'extension de certaines evaluations statistiques au cas de petits echantillons , 1943 .
[98] Malgorzata Bogdan,et al. On Existence of Maximum Likelihood Estimators in Exponential Families , 2000 .
[99] Frank Nielsen,et al. PyMEF — A framework for exponential families in Python , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).
[100] K. Matusita. Decision Rules, Based on the Distance, for Problems of Fit, Two Samples, and Estimation , 1955 .
[101] Richard M. Karp,et al. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.
[102] S. Amari. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .
[103] J. Marron,et al. Smoothed cross-validation , 1992 .
[104] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[105] L. Cobb. The Multimodal Exponential Families of Statistical Catastrophe Theory , 1981 .
[106] Frank Nielsen,et al. Fast Learning of Gamma Mixture Models with k-MLE , 2013, SIMBAD.
[107] Erling B. Andersen,et al. Sufficiency and Exponential Families for Discrete Sample Spaces , 1970 .
[108] Giovanni Parmigiani,et al. GAMMA SHAPE MIXTURES FOR HEAVY-TAILED DISTRIBUTIONS , 2008, 0807.4663.
[109] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[110] H. Jeffreys. An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[111] Ling Guan,et al. Application of Laplacian Mixture Model to Image and Video Retrieval , 2007, IEEE Transactions on Multimedia.
[112] Brian Gough,et al. GNU Scientific Library Reference Manual - Third Edition , 2003 .
[113] Inderjit S. Dhillon,et al. Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..
[114] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.