New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters

The Cramér-Rao bounds (CRB) is a lower bound of great interest for system analysis and design in the asymptotic region [high signal-to-noise ratio (SNR) and/or large number of snapshots], as it is simple to calculate and it is usually possible to obtain closed form expressions. The first part of the paper is a generalization to complex parameters of the Barankin rationale for deriving MSE lower bounds, that is the minimization of a norm under a set of linear constraints. With the norm minimization approach the study of Fisher information matrix (FIM) singularity, constrained CRB and regularity conditions become straightforward corollaries of the derivation. The second part provides new results useful for system analysis and design: a general reparameterization inequality, the equivalence between reparameterization and equality constraints, and an explicit relationship between parameters unidentifiability and FIM singularity.

[1]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[2]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[3]  P. Larzabal,et al.  On the High-SNR Conditional Maximum-Likelihood Estimator Full Statistical Characterization , 2006, IEEE Transactions on Signal Processing.

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  F. Glave,et al.  A new look at the Barankin lower bound , 1972, IEEE Trans. Inf. Theory.

[6]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[7]  Bhaskar D. Rao,et al.  Cramer-Rao lower bound for constrained complex parameters , 2004, IEEE Signal Processing Letters.

[8]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[9]  Luke A. Griffin Encyclopaedia of Mathematics , 2013 .

[10]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[11]  Yoram Bresler,et al.  A compact Cramer-Rao bound expression for parametric estimation of superimposed signals , 1992, IEEE Trans. Signal Process..

[12]  Philippe Forster,et al.  On lower bounds for deterministic parameter estimation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Adriaan van den Bos,et al.  A Cramer-Rao lower bound for complex parameters , 1994, IEEE Trans. Signal Process..

[14]  Yonina C. Eldar,et al.  On the Constrained CramÉr–Rao Bound With a Singular Fisher Information Matrix , 2009, IEEE Signal Processing Letters.

[15]  B. C. Ng,et al.  On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.

[16]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[17]  Jonathan S. Abel,et al.  A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.

[18]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[19]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[20]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[21]  P. Stoica,et al.  The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.

[22]  Irwin Guttman,et al.  Bhattacharyya Bounds without Regularity Assumptions , 1952 .

[23]  Y. Bresler,et al.  Worst-case Cramer-Rao bound for parametric estimation of superimposed signals , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.

[24]  Thomas L. Marzetta,et al.  A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..

[25]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[26]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[27]  R. Fisher 001: On an Absolute Criterion for Fitting Frequency Curves. , 1912 .

[28]  W. Rudin Principles of mathematical analysis , 1964 .

[29]  Thomas L. Marzetta,et al.  Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..

[30]  Yoram Bresler,et al.  Worst case Cramer-Rao bounds for parametric estimation of superimposed signals with applications , 1992, IEEE Trans. Signal Process..

[31]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[32]  B. A. D. H. Brandwood A complex gradient operator and its applica-tion in adaptive array theory , 1983 .

[33]  M. Fréchet Sur l'extension de certaines evaluations statistiques au cas de petits echantillons , 1943 .

[34]  C. Blyth,et al.  Necessary and Sufficient Conditions for Inequalities of Cramer-Rao Type , 1974 .

[35]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[36]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[37]  P. Larzabal,et al.  On the influence of a detection step on lower bounds for deterministic parameter estimation , 2005, IEEE Transactions on Signal Processing.

[38]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[39]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..