Reduced basis methods for partial differential equations with stochastic influences

This thesis is concerned with the development of reduced basis methods for parametrized partial differential equations (PPDEs) with stochastic influences. We consider uncertainties in the operator, right-hand side, boundary conditions and in the underlying domain. We are particularly interested in situations where the PPDE has to be evaluated quite often for various instances of the deterministic parameters and the stochastic influences. In the stochastic framework, such a situation occurs, e.g., in Monte Carlo simulations to compute statistical quantities such as mean, variance, or other moments. For the efficient application of the reduced basis method, it is necessary to develop affine decompositions with respect to the stochastic influences. We therefore extend the methodology of the empirical interpolation for the application in the stochastic setting, in particular for noisy input data. Alternatively, we also use a truncated Karhunen–Loève (KL) expansion to resolve and affinely decompose the stochasticity. We derive a-posteriori error bounds for the state variable and output functionals, including also the KL-truncation errors. Non-standard dual problems are introduced for the approximation and analysis of special quadratic outputs which can in particular be applied to efficiently approximate statistical quantities such as mean and moments. We provide new error bounds for such outputs, outperforming standard approximations. To reduce the number of affine terms and hence for the improvement of the efficiency of the reduced simulations, we generalized the partitioning concepts for explicitly given deterministic parameter domains to arbitrary input functions with possibly unknown, high-dimensional, or even without direct parameter dependencies. No a-priori information about the input is necessary. We use all the presented methods for the application to PPDEs with stochastic influences on stochastic and additionally parametrized domains.

[1]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[2]  Yvon Maday,et al.  A reduced-basis element method , 2002 .

[3]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[4]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Saddle Point Problems , 2012, SIAM J. Sci. Comput..

[5]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[6]  Andy J. Keane,et al.  Multi-element stochastic reduced basis methods , 2008 .

[7]  I. Babuska Error-bounds for finite element method , 1971 .

[8]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[9]  Anthony T. Patera,et al.  A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation , 2013 .

[10]  Anthony T. Patera,et al.  Real-Time Reliable Prediction of Linear-Elastic Mode-I Stress Intensity Factors for Failure Analysis , 2006 .

[11]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[12]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[13]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[14]  Benjamin Stamm,et al.  Parameter multi‐domain ‘hp’ empirical interpolation , 2012 .

[15]  Peter Hepperger,et al.  Option Pricing in Hilbert Space-Valued Jump-Diffusion Models Using Partial Integro-Differential Equations , 2010, SIAM J. Financial Math..

[16]  S'ebastien Boyaval,et al.  A fast Monte–Carlo method with a reduced basis of control variates applied to uncertainty propagation and Bayesian estimation , 2012, 1202.0781.

[17]  M. Cwikel,et al.  Sobolev type embeddings in the limiting case , 1998 .

[18]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[19]  R. Tempone,et al.  ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .

[20]  B. Haasdonk,et al.  ONLINE GREEDY REDUCED BASIS CONSTRUCTION USING DICTIONARIES , 2012 .

[21]  Jan Chleboun,et al.  Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions , 2002, Math. Comput..

[22]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[23]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .

[24]  Bernard Haasdonk,et al.  Model reduction of parametrized evolution problems using the reduced basis method with adaptive time partitioning , 2011 .

[25]  Daniel M. Tartakovsky,et al.  Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..

[26]  Anthony T. Patera,et al.  The Static Condensation Reduced Basis Element Method for a Mixed-Mean Conjugate Heat Exchanger Model , 2014, SIAM J. Sci. Comput..

[27]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[28]  Olivier Pironneau,et al.  Calibration of options on a reduced basis , 2009, J. Comput. Appl. Math..

[29]  Anthony T. Patera,et al.  An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations , 2010, SIAM J. Sci. Comput..

[30]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[31]  Claudio Canuto,et al.  A Posteriori Error Analysis of the Reduced Basis Method for Nonaffine Parametrized Nonlinear PDEs , 2009, SIAM J. Numer. Anal..

[32]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[33]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[34]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[35]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[36]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[37]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[38]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[39]  Peter Hepperger Hedging electricity swaptions using partial integro-differential equations , 2012 .

[40]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[41]  Ngoc Cuong Nguyen,et al.  An interpolation method for the reconstruction and recognition of face images , 2007, VISAPP.

[42]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[43]  Karsten Urban,et al.  Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion , 2013, SIAM/ASA J. Uncertain. Quantification.

[44]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[45]  Stefan Volkwein,et al.  Optimal Control of Parameter-Dependent Convection-Diffusion Problems around Rigid Bodies , 2010, SIAM J. Sci. Comput..

[46]  L Claes,et al.  A numerical model of the fracture healing process that describes tissue development and revascularisation , 2011, Computer methods in biomechanics and biomedical engineering.

[47]  Karsten Urban,et al.  Affine Decompositions of Parametric Stochastic Processes for Application within Reduced Basis Methods , 2012 .

[48]  Andy J. Keane,et al.  Hybridization of stochastic reduced basis methods with polynomial chaos expansions , 2006 .

[49]  K. Urban,et al.  REDUCED BASIS METHODS FOR QUADRATICALLY NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC INFLUENCES , 2012 .

[50]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[51]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[52]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[53]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[54]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[55]  Helmut Harbrecht,et al.  On output functionals of boundary value problems on stochastic domains , 2009 .

[56]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[57]  Robert A. Handler,et al.  Karhunen–Loeve representations of turbulent channel flows using the method of snapshots , 2006 .

[58]  Helmut Harbrecht,et al.  A finite element method for elliptic problems with stochastic input data , 2010 .

[59]  Space-Time Reduced Basis Methods for Time-Periodic Partial Differential Equations , 2012 .

[60]  Michel Loève,et al.  Probability Theory I , 1977 .

[61]  Danny C. Sorensen,et al.  Discrete Empirical Interpolation for nonlinear model reduction , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[62]  Manolis Papadrakakis,et al.  Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation , 1996 .

[63]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[64]  Neil S. Trudinger,et al.  On Imbeddings into Orlicz Spaces and Some Applications , 1967 .

[65]  Bernard Haasdonk,et al.  THE LOCALIZED REDUCED BASIS MULTISCALE METHOD , 2015 .

[66]  Bernard Haasdonk,et al.  Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..

[67]  N. Wiener The Homogeneous Chaos , 1938 .

[68]  Anthony T. Patera,et al.  Reduced basis approximation and a posteriori error estimation for stress intensity factors , 2007 .

[69]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[70]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[71]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[72]  Bernard Haasdonk,et al.  Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems , 2015, Comput. Optim. Appl..

[73]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[74]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[75]  Lutz Claes,et al.  Influence of the fixation stability on the healing time--a numerical study of a patient-specific fracture healing process. , 2010, Clinical biomechanics.

[76]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[77]  Barbara I. Wohlmuth,et al.  A Reduced Basis Method for Parametrized Variational Inequalities , 2012, SIAM J. Numer. Anal..

[78]  Claudio Canuto,et al.  A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.

[79]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[80]  Jens L. Eftang,et al.  An hp certified reduced basis method for parametrized parabolic partial differential equations , 2011 .

[81]  Karsten Urban,et al.  A Reduced-Basis Method for solving parameter-dependent convection-diffusion problems around rigid bodies , 2006 .

[82]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[83]  Anthony T. Patera,et al.  A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient , 2009 .

[84]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[85]  Mark Kärcher,et al.  Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems , 2011 .

[86]  Simone Deparis,et al.  Reduced Basis Error Bound Computation of Parameter-Dependent Navier-Stokes Equations by the Natural Norm Approach , 2008, SIAM J. Numer. Anal..

[87]  Gianluigi Rozza,et al.  A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators , 2008 .

[88]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[89]  Stefan Volkwein,et al.  Greedy Sampling Using Nonlinear Optimization , 2014 .

[90]  Gianluigi Rozza,et al.  A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks , 2012 .

[91]  J. Rappaz,et al.  Numerical analysis for nonlinear and bifurcation problems , 1997 .

[92]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[93]  Anthony T. Patera,et al.  Port Reduction in Component-Based Static Condensation for Parametrized Problems : Approximation and A Posteriori Error Estimation ∗ , 2012 .

[94]  Andrea Barth,et al.  Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2012 .

[95]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[96]  Rama Cont,et al.  A Reduced Basis for Option Pricing , 2010, SIAM J. Financial Math..

[97]  Karen Veroy,et al.  REDUCED BASIS A POSTERIORI ERROR BOUNDS FOR THE STOKES EQUATIONS IN PARAMETRIZED DOMAINS: A PENALTY APPROACH , 2010 .

[98]  Mark Kärcher,et al.  A certified reduced basis method for parametrized elliptic optimal control problems , 2014 .

[99]  Raul Tempone,et al.  Implementation of optimal Galerkin and collocation approximations of PDEs with random coefficients , 2011 .

[100]  Timo Tonn Reduced-basis method (RBM) for non-affine elliptic parametrized PDEs - (motivated by optimization in hydromechanics) , 2012 .

[101]  Dimitrios V. Rovas,et al.  Reduced-basis output bound methods for parabolic problems , 2006 .