Improving genetic algorithms: an approach based on multi-elitism and Lamarckian mutation

This paper describes a genetic algorithm for multi-modal optimization combining fitness sharing and local search (Nelder and Mead's Simplex). While conventional fitness sharing tends to distribute the population across all the optima locating the peaks with low accuracy, the proposed algorithm aims at clearly discovering the position of each optimum with a higher accuracy. To pursue this objective, the algorithm uses fitness sharing to locate the basins of attraction of the various optima, and a special mutation operator (Lamarckian mutation) assuring an accurate local search. Furthermore, differently from conventional elitist genetic algorithms, rather than copying only the single best solution, our algorithm replicates the best solution found in every peak (residents) in the next population (multi-elitism). The simulated benchmark used to evaluate the approach encompasses both well-known multi-modal functions and the application to a fuzzy controller design problem.

[1]  Russell C. Eberhart,et al.  Implementation of evolutionary fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[2]  David E. Goldberg,et al.  Optimizing Global-Local Search Hybrids , 1999, GECCO.

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[5]  Z. Tang Adaptive partitioned random search to global optimization , 1994, IEEE Trans. Autom. Control..

[6]  Frank Hoffmann,et al.  Evolutionary algorithms for fuzzy control system design , 2001, Proc. IEEE.

[7]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[8]  David E. Goldberg,et al.  Tackling multimodal problems in hybrid genetic algorithms , 2001 .

[9]  Francisco Herrera,et al.  Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems , 2001, Fuzzy Sets Syst..

[10]  R. K. Ursem Multinational evolutionary algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[12]  David E. Goldberg,et al.  Decision making in a hybrid genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[13]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[14]  V. Subramaniam,et al.  A combined genetic algorithms-shooting method approach to solving optimal control problems , 2000, Int. J. Syst. Sci..

[15]  Lawrence Davis,et al.  Shall We Repair? Genetic AlgorithmsCombinatorial Optimizationand Feasibility Constraints , 1993, ICGA.

[16]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[17]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.