Heavily Si‐doped GaAs grown by low‐pressure metalorganic chemical vapor deposition using tertiarybutylarsine and silane

Heavy Si doping was studied for low‐pressure metalorganic chemical vapor deposition of GaAs by using tertiarybutylarsine (tBAs) as a group‐V source and silane (SiH4) as a doping source gas. The Si doping efficiency was higher by one order of magnitude when tBAs was used instead of arsine (AsH3). The maximum electron concentration was 9.0×1018 cm−3, which is slightly higher than that obtained for AsH3 (5.9×1018 cm−3). The slight increase of the maximum concentration is considered to be due to a reduction of the carrier compensating center generated in high SiH4 partial pressure conditions. Generation of the electrical compensating center is assigned to be related with the carbon incorporation from alkylsilanes during growth.

[1]  Hitoshi Tanaka,et al.  Effective Si planar doping of GaAs by MOVPE using tertiarybutylarsine , 1991 .

[2]  T. Kikkawa,et al.  AlGaAs/GaAs and AlGaAs/InGaAs/GaAs High Electron Mobility Transistors Grown by Metalorganic Vapor Phase Epitaxy Using Tertiarybutylarsine , 1991 .

[3]  Hitoshi Tanaka,et al.  Growth temperature dependence of EL2 concentration in GaAs grown by metalorganic vapor‐phase epitaxy using tertiarybutylarsine , 1990 .

[4]  Hitoshi Tanaka,et al.  The growth of GaAs, AlGaAs, and selectively doped AlGaAs/GaAs heterostructures by metalorganic vapor phase epitaxy using tertiarybutylarsine , 1990 .

[5]  F. Stevie,et al.  Controlled doping of GaAs films grown with tertiarybutylarsine , 1990 .

[6]  R. Esman,et al.  GaAs p‐i‐n photodiodes made by metalorganic chemical vapor deposition using tertiarybutylarsine and arsine , 1989 .

[7]  M. Mashita Mass Spectrometric Studies on Silicon Doping of OMYPE GaAs , 1989 .

[8]  G. Haacke,et al.  Metalorganic chemical vapor deposition of high‐purity GaAs using tertiarybutylarsine , 1989 .

[9]  K. Kakimoto,et al.  Heavily Si‐doped GaAs grown by metalorganic chemical vapor deposition , 1988 .

[10]  M. Thewalt,et al.  Magnetophotoluminescence characterization of residual donors in GaAs grown by metalorganic chemical vapor deposition , 1988 .

[11]  G. B. Stringfellow,et al.  GaAs growth using tertiarybutylarsine and trimethylgallium , 1988 .

[12]  Chih-Wen Liu,et al.  Characteristics of Si-doped GaAs epilayers grown by metalorganic chemical vapor deposition using a silane source , 1987 .

[13]  M. Lamont,et al.  Use of tertiarybutylarsine in the metalorganic chemical vapor deposition growth of GaAs , 1987 .

[14]  G. B. Stringfellow,et al.  Use of tertiarybutylarsine for GaAs growth , 1987 .

[15]  T. Baba,et al.  Heavily Si-Doped GaAs and AlAs/n-GaAs Superlattice Grown by Molecular Beam Epitaxy , 1985 .

[16]  R. Sacks,et al.  Highly doped GaAs:Si by molecular beam epitaxy , 1985 .

[17]  B. Meyerson,et al.  Silicon doping of GaAs and AlxGa1−xAs using disilane in metalorganic chemical vapor deposition , 1984 .

[18]  M. Ludowise,et al.  H2Se “memory effects” upon doping profiles in GaAs grown by metalorganic chemical vapor deposition (MO-CVD) , 1984 .

[19]  J. D. Parsons,et al.  Tin Doping of Gallium Arsenide by Metal Organic Chemical Vapor Deposition (MOCVD) , 1983 .

[20]  K. Wittmaack,et al.  Unexpectedly high energy photoluminescence of highly Si doped GaAs grown by MOVPE , 1982 .

[21]  D. Huyghe,et al.  A New Method for Growing GaAs Epilayers by Low Pressure Organometallics , 1979 .

[22]  L. Slifkin,et al.  Point Defects in Solids , 1972 .