Coupled Effect of Surface Energy and Size Effect on the Static and Dynamic Pull-In Instability of Narrow Nano-Switches

In this paper, the generalized differential quadrature (GDQ) method is employed to investigate the static and dynamic pull-in instability of nano-switches with small width/height ratio. For nano-switches with slender narrow-width beam elements, the corrections due to surface layer, external forces and size effect are crucial. So the couple-stress theory combined with the Gurtin–Murdoch surface elasticity is employed to incorporate the coupled effects of size phenomena and surface energy. In addition, the model accounts for the external force corrections by incorporating the impact of narrow width on the distribution of Casimir attraction, van der Waals force and the fringing field. The effects of the above-mentioned corrections on the static and dynamic pull-in parameters are demonstrated. The results from the modified model are compared with those from conventional parallel beam-plate models in the literature. It is shown that the corrections significantly affect the pull-in parameters of the narrow-width switches and hence, cannot be ignored in theoretical models. For wide switches, the results of the proposed model approach to those of the conventional models.

[1]  John Edward Lennard-Jones,et al.  Perturbation problems in quantum mechanics , 1930 .

[2]  H. B. Palmer The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel transformation , 1937, Electrical Engineering.

[3]  U. Ejike The plane circular crack problem in the linearized couple-stress theory , 1969 .

[4]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[5]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[6]  R. Balian,et al.  Electromagnetic waves near perfect conductors. I. Multiple scattering expansions. Distribution of modes , 1977 .

[7]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[8]  N. P. van der Meijs,et al.  VLSI circuit reconstruction from mask topology , 1984, Integr..

[9]  J. Israelachvili Intermolecular and surface forces , 1985 .

[10]  H. Nishiyama,et al.  Capacitance of disk capacitors , 1993 .

[11]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[12]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[13]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[14]  David C C Lam,et al.  Strain gradient plasticity effect in indentation hardness of polymers , 1999 .

[15]  A. Anthoine,et al.  Effect of couple-stresses on the elastic bending of beams , 2000 .

[16]  Spruch,et al.  Focusing virtual photons: casimir energies for some pairs of conductors , 2000, Physical review letters.

[17]  B. Sernelius,et al.  Fractional van der Waals interaction between thin metallic films , 2000 .

[18]  G. L. Klimchitskaya,et al.  Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals , 2000 .

[19]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[20]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[21]  Ling Wen-hui,et al.  Dynamic Behaviour of Nanoscale Electrostatic Actuators , 2003 .

[22]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[23]  H. G. Georgiadis,et al.  High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects , 2003 .

[24]  H. Gies,et al.  Casimir effect on the worldline , 2003, hep-th/0303264.

[25]  K. Hsia,et al.  A study of microbend test by strain gradient plasticity , 2003 .

[26]  Ya-Pu Zhao,et al.  Pull-in instability study of carbon nanotube tweezers under the influence of van der Waals forces , 2004 .

[27]  Casimir effect and geometric optics. , 2003, Physical review letters.

[28]  G. Voyiadjis,et al.  Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory , 2004 .

[29]  Andrew W. Mcfarland,et al.  Role of material microstructure in plate stiffness with relevance to microcantilever sensors , 2005 .

[30]  Ya-Pu Zhao,et al.  Nonlinear behavior for nanoscale electrostatic actuators with Casimir force , 2005 .

[31]  W. Lin,et al.  Casimir effect on the pull-in parameters of nanometer switches , 2005 .

[32]  M. Porfiri,et al.  Electromechanical Model of Electrically Actuated Narrow Microbeams , 2006, Journal of Microelectromechanical Systems.

[33]  H. Gies,et al.  Casimir edge effects. , 2006, Physical review letters.

[34]  H. P. Lee,et al.  Thin plate theory including surface effects , 2006 .

[35]  R. Puers,et al.  A physical model to predict stiction in MEMS , 2006 .

[36]  Pradeep Sharma,et al.  A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies , 2007 .

[37]  Yuh-Chung Hu,et al.  An analytical model considering the fringing fields for calculating the pull-in voltage of micro curled cantilever beams , 2007 .

[38]  Derek Nankivil,et al.  Mechanical Properties of Au Films on Silicon Substrates , 2007 .

[39]  G. Rezazadeh,et al.  Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches , 2007, Journal of Microelectromechanical Systems.

[40]  G. J. Delben,et al.  Influence of the Casimir force on the pull-in parameters of silicon based electrostatic torsional actuators , 2007 .

[41]  A. Alasty,et al.  Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces , 2007 .

[42]  Jin He,et al.  Surface effect on the elastic behavior of static bending nanowires. , 2008, Nano letters.

[43]  Davide Spinello,et al.  REDUCED-ORDER MODELS FOR MICROELECTROMECHANICAL RECTANGULAR AND CIRCULAR PLATES INCORPORATING THE CASIMIR FORCE , 2008 .

[44]  Wen-Hui Lin,et al.  Pull-in Instability of Micro-switch Actuators: Model Review , 2008 .

[45]  G. J. Delben,et al.  Dispersion force for materials relevant for micro- and nanodevices fabrication , 2008, 0802.2124.

[46]  A. R. Vosoughi,et al.  DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges , 2009 .

[47]  Xi-Qiao Feng,et al.  Surface effects on buckling of nanowires under uniaxial compression , 2009 .

[48]  M. Abadyan,et al.  Theoretical study of the effect of Casimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method , 2010 .

[49]  S. Asokanthan,et al.  Influence of surface effects on the pull-in instability of NEMS electrostatic switches , 2010, Nanotechnology.

[50]  Yapu Zhao,et al.  The effects of surface tension on the elastic properties of nano structures , 2010 .

[51]  M. Asghari,et al.  Investigation of the size effects in Timoshenko beams based on the couple stress theory , 2011 .

[52]  Liying Jiang,et al.  The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects , 2011, Nanotechnology.

[53]  R. Ansari,et al.  Surface stress effects on the free vibration behavior of nanoplates , 2011 .

[54]  Yiming Fu,et al.  Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies , 2011 .

[55]  M. Abadyan,et al.  Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS , 2011 .

[56]  Mohamadreza Abadyan,et al.  Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory , 2011 .

[57]  M. Abadyan,et al.  Closed-form Approximations of the Pull-in Parameters and Stress Field of Electrostatic Cantilever Nano-actuators Considering van der Waals Attraction , 2011 .

[58]  G. Rezazadeh,et al.  Mechanical Behavior of a Bi-Layer Cantilever Micro-Beam Subjected to Electrostatic Force, Mechanical Shock and Thermal Moment , 2011 .

[59]  Mohamadreza Abadyan,et al.  Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations , 2012 .

[60]  Pragati Singhal,et al.  Generalised Differential Quadrature Method in the Study of Free Vibration Analysis of Monoclinic Rectangular Plates , 2012 .

[61]  A. Bahmanikashkouli,et al.  Generalized Differential Quadrature Nonlinear Consolidation Analysis of Clay Layer with Time-Varied Drainage Conditions , 2012 .

[62]  Mostafa Baghani,et al.  Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory , 2012 .

[63]  Yiming Fu,et al.  Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory , 2012 .

[64]  Reza Ansari,et al.  Surface Stress Effect on the Pull-In Instability of Hydrostatically and Electrostatically Actuated Rectangular Nanoplates With Various Edge Supports , 2012 .

[65]  R. Ansari,et al.  Size-Dependent Pull-In Instability of Hydrostatically and Electrostatically Actuated Circular Microplates , 2013 .

[66]  Wei Lu,et al.  A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects , 2013 .

[67]  Hamid Reza Ovesy,et al.  MODELING THE INFLUENCE OF SURFACE EFFECT ON INSTABILITY OF NANO-CANTILEVER IN PRESENCE OF VAN DER WAALS FORCE , 2013 .

[68]  G. Rezazadeh,et al.  A comprehensive study of stability in an electro-statically actuated micro-beam , 2013 .

[69]  G. Rezazadeh,et al.  Gap Dependent Bifurcation Behavior of a Nano-Beam Subjected to a Nonlinear Electrostatic Pressure , 2014 .

[70]  G. Rezazadeh,et al.  Micro-inertia effects on the dynamic characteristics of micro-beams considering the couple stress theory , 2014 .

[71]  Ming Li,et al.  A MECHANICAL MODEL FOR SELF-ASSEMBLED GRAPHENE AROUND NANOTUBE , 2014 .

[72]  M. Shaat,et al.  Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories , 2014 .

[73]  H. Sedighi THE INFLUENCE OF SMALL SCALE ON THE PULL-IN BEHAVIOR OF NONLOCAL NANOBRIDGES CONSIDERING SURFACE EFFECT, CASIMIR AND VAN DER WAALS ATTRACTIONS , 2014 .