Slotted Random Access Spread-Spectrum Networks: An Analytical Framework

An analytic framework is proposed for the study of singlehop spread-spectrum networks using random access and packet switching under various network topologies and channel conditions. The key feature of the theory is the identification of a set of probabilistic parameters, which, based on a symmetry argument, serve to efficiently summarize the effect on performance of various network considerations such as transmitter-receiver configuration, spreadspectrum code allocation, error correction and detection mechanisms, spreading format, jamming conditions, etc. Examples investigating capture effects, coding tradeoffs, and scheduling optimizations are presented. Various previously known results are shown to be special cases of the framework that we describe.

[1]  Basil S. Maglaris,et al.  Throughput Analysis in Multihop CSMA Packet Radio Networks , 1987, IEEE Trans. Commun..

[2]  Evaggelos A. Geraniotis Coding for BPSK SFH/SSMA Communications over Fading Channels , 1982, MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications.

[3]  A. R. K. Sastry,et al.  Effect of Acknowledgment Traffic on the Performance of Slotted ALOHA-Code Division Multiple Access Systems , 1983, MILCOM 1983 - IEEE Military Communications Conference.

[4]  Michael B. Pursley,et al.  Error Probabilities for Binary Direct-Sequence Spread-Spectrum Communications with Random Signature Sequences , 1987, IEEE Trans. Commun..

[5]  Andreas Polydoros,et al.  An Analytical Framework for Slotted Random Access Spread Spectrum Networks , 1985, MILCOM 1985 - IEEE Military Communications Conference.

[6]  Norman Abramson,et al.  The ALOHA System-Another Alternative for Computer Communications , 1899 .

[7]  S. Musa,et al.  Co-Channel Interference of Spread Spectrum Systems in a Multiple User Environment , 1978, IEEE Trans. Commun..

[8]  E. A. Geraniotis,et al.  Error Probability for Direct-Sequence Spread-Spectrum Multiple-Access Communications - Part II: Approximations , 1982, IEEE Transactions on Communications.

[9]  John A. Silvester,et al.  Spreading code protocols for distributed spread-spectrum packet radio networks , 1988, IEEE Trans. Commun..

[10]  B. H. Batson,et al.  Performance considerations of frequency-hopping multiple access , 1980 .

[11]  Andrew J. Viterbi,et al.  When not to spread spectrum - A sequel , 1985, IEEE Communications Magazine.

[12]  C. Namislo Analysis of Mobile Radio Slotted ALOHA Networks , 1984, IEEE Journal on Selected Areas in Communications.

[13]  Robert M Gagliardi,et al.  Satellite Communications , 1984 .

[14]  N.J.A. Sloane New concepts in multi-user communication , 1983, Proceedings of the IEEE.

[15]  Bruce Hajek RECURSIVE RETRANSMISSION CONTROL - APPLICATION TO A FREQUENCY-HOPPED SPREAD-SPECTRUM SYSTEM. , 1982 .

[16]  M. Pursley,et al.  Performance Evaluation for Phase-Coded Spread-Spectrum Multiple-Access Communication - Part I: System Analysis , 1977, IEEE Transactions on Communications.

[17]  Kung Yao,et al.  Error Probability of Asynchronous Spread Spectrum Multiple Access Communication Systems , 1977, IEEE Trans. Commun..

[18]  Elvino S. Sousa A spreading code protocol utilizing an echo from the receiver , 1988, MILCOM 88, 21st Century Military Communications - What's Possible?'. Conference record. Military Communications Conference.

[19]  Leonard Kleinrock,et al.  Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation , 1975, IEEE Trans. Commun..

[20]  D. V. Sarwate,et al.  Error Probability for Direct-Sequence Spread-Spectrum Multiple-Access Communications - Part I: Upper and Lower Bounds , 1982, IEEE Transactions on Communications.

[21]  J. Silvester,et al.  An iterative scheme for performance modeling of slotted ALOHA packet radio networks , 1982 .

[22]  Joseph Y. N. Hui,et al.  Throughput analysis for code division multiple accessing of the spread spectrum channel , 1984, IEEE Transactions on Vehicular Technology.

[23]  Andrew J. Viterbi,et al.  A processing satellite transponder for multiple access by low-rate mobile users , 1979 .

[24]  M. Pursley,et al.  Performance Evaluation for Phase-Coded Spread-Spectrum Multiple-Access Communication - Part II: Code Sequence Analysis , 1977, IEEE Transactions on Communications.

[25]  J. Heller,et al.  A New Coding Technique for Asynchronous Multiple Access Communication , 1971 .

[26]  George R. Cooper,et al.  A spread-spectrum technique for high-capacity mobile communications , 1978 .

[27]  Michael B. Pursley Frequency-hop transmission for satellite packet switching and terrestrial packet radio networks , 1986, IEEE Trans. Inf. Theory.

[28]  Dipankar Raychaudhuri,et al.  Performance Analysis of Random Access Packet-Switched Code Division Multiple Access Systems , 1981, IEEE Trans. Commun..

[29]  Michael B. Pursley,et al.  Error Probabilities for Spread-Spectrum Packet Radio with Convolutional Codes and Viterbi Decoding , 1985, MILCOM 1985 - IEEE Military Communications Conference.

[30]  V. K. Prabhu,et al.  Frequency-hopped multilevel FSK for mobile Radio , 1980, The Bell System Technical Journal.

[31]  S.A. Gronemeyer,et al.  Advances in packet radio technology , 1978, Proceedings of the IEEE.

[32]  D. Davis,et al.  Performance of Slotted ALOHA Random Access with Delay Capture and Randomized Time of Arrival , 1980, IEEE Trans. Commun..

[33]  Hideo Miyahara,et al.  Performance evaluation for spread-spectrum multiple-access communication systems , 1989 .

[34]  G. Cooper,et al.  Cellular land-mobile radio: Why spread spectrum? , 1979, IEEE Communications Magazine.

[35]  C.L. Weber,et al.  Performance considerations of code division multiple-access systems , 1981, IEEE Transactions on Vehicular Technology.