Adversarial multiple access channels and a new model of multimedia fingerprinting coding

We consider different models of malicious multiple access channels, especially for binary adder channel and for A-channel, and show how they can be used for the reformulation of digital fingerprinting coding problems. In particular, we propose a new model of multimedia fingerprinting coding. In the new model, not only zeroes and plus/minus ones but arbitrary coefficients of linear combinations of noise-like signals for forming watermarks (digital fingerprints) can be used. This modification allows dramatically increase the possible number of users with the property that if t or less malicious users create a forge digital fingerprint then a dealer of the system can find all of them with zero-error probability. We show how arisen problems are related to the compressed sensing problem.

[1]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[2]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[3]  Signature codes for a special class of multiple access channel , 2016, 2016 XV International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY).

[4]  Gérard D. Cohen,et al.  A Hypergraph Approach to the Identifying Parent Property: The Case of Multiple Parents , 2001, SIAM J. Discret. Math..

[5]  Min Wu,et al.  Forensic analysis of nonlinear collusion attacks for multimedia fingerprinting , 2005, IEEE Transactions on Image Processing.

[6]  Min Wu,et al.  Anti-collusion fingerprinting for multimedia , 2003, IEEE Trans. Signal Process..

[7]  Dan Collusion-Secure Fingerprinting for Digital Data , 2002 .

[8]  K. J. Ray Liu,et al.  Multimedia Fingerprinting Forensics for Traitor Tracing , 2005 .

[9]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[10]  Amos Fiat,et al.  Tracing traitors , 2000, IEEE Trans. Inf. Theory.

[11]  Alexander Barg,et al.  Digital fingerprinting codes: problem statements, constructions, identification of traitors , 2003, IEEE Trans. Inf. Theory.

[12]  E. E. Egorova,et al.  Compositional Restricted Multiple Access Channel , 2018, Probl. Inf. Transm..

[13]  Jack K. Wolf,et al.  On the T-user M-frequency noiseless multiple-access channel with and without intensity information , 1981, IEEE Trans. Inf. Theory.

[14]  Minquan Cheng,et al.  Separable Codes , 2012, IEEE Transactions on Information Theory.

[15]  Dan Boneh,et al.  Collusion-Secure Fingerprinting for Digital Data , 1998, IEEE Trans. Inf. Theory.

[16]  Minquan Cheng,et al.  On Anti-Collusion Codes and Detection Algorithms for Multimedia Fingerprinting , 2011, IEEE Transactions on Information Theory.

[17]  Catherine A. Meadows,et al.  Fingerprinting Long Forgiving Messages , 1985, CRYPTO.

[18]  Moon Ho Lee,et al.  Signature codes for the A-channel and collusion-secure multimedia fingerprinting codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[19]  Moon Ho Lee,et al.  Signature codes for weighted noisy adder channel, multimedia fingerprinting and compressed sensing , 2018, Designs, Codes and Cryptography.

[20]  Gregory A. Kabatiansky,et al.  Multimedia fingerprinting codes resistant against colluders and noise , 2016, 2016 IEEE International Workshop on Information Forensics and Security (WIFS).