Luminescent coordination polymers based on self-assembled cadmium dipyrrin complexes.

A series of novel Cd(II) complexes based on α,β-unsubstituted dipyrrin ligands (dpm) has been prepared and characterised both in solution and in the solid state. These compounds are of the [Cd(dpm)(2)] type, with the coordination sphere of the metal centre occupied by two dpm chelates. Interestingly, in contrast to what has been reported for the Zn(II) analogues, in the presence of a pyridyl- or imidazolyl-appended dpm ligand, the coordination number of the Cd(II) cation can be increased to six, leading to an octahedral coordination sphere. As a consequence, the formation of 1-, 2-, and 3D coordination polymers by self-assembly is observed. Photophysical investigations of the discrete complexes and self-assembled networks have demonstrated that both types of compounds are luminescent in the solid state.

[1]  Y. Kitagawa,et al.  Fluorescent azadipyrrinato zinc(II) complex: hybridisation with a dipyrrinato ligand. , 2012, Dalton transactions.

[2]  Byung Sun Lee,et al.  Photophysical analysis of 1,10-phenanthroline-embedded porphyrin analogues and their magnesium(II) complexes. , 2012, Chemistry.

[3]  M. W. Hosseini,et al.  Stepwise construction of grid-type Cu(II)-Cd(II) heterometallic MOFs based on an imidazole-appended dipyrrin ligand. , 2012, Chemical communications.

[4]  Wei Sun,et al.  Synthesis and characterisation of neutral mononuclear cuprous complexes based on dipyrrin derivatives and phosphine mixed-ligands. , 2012, Dalton transactions.

[5]  R. Griffin,et al.  Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. , 2012, Journal of the American Chemical Society.

[6]  M. W. Hosseini,et al.  Heterometallic coordination polymers incorporating dipyrrin based heteroleptic copper and cobalt complexes: to Ag-π or not? , 2012, Dalton transactions.

[7]  Y. Kitagawa,et al.  An extremely bright heteroleptic bis(dipyrrinato)zinc(II) complex. , 2012, Chemistry, an Asian journal.

[8]  L. De Cola,et al.  Excited state properties and energy transfer within dipyrrin-based binuclear iridium/platinum dyads: the effect of ortho-methylation on the spacer. , 2012, Chemistry.

[9]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical reviews.

[10]  S. Telfer,et al.  Luminescent rhenium(I)-dipyrrinato complexes. , 2012, Inorganic chemistry.

[11]  D. S. Pandey,et al.  Synthesis and characterization of some heteroleptic copper(II) complexes based on meso-substituted dipyrrins , 2011 .

[12]  P. Hoffmann,et al.  A free-base dipyrrin capable of forming extended architectures comparable to those of its metal(II) complex counterparts , 2011 .

[13]  M. Dincǎ,et al.  Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. , 2011, Journal of the American Chemical Society.

[14]  T. S. Cameron,et al.  Synthesis and characterization of fluorescent pyrrolyldipyrrinato Sn(IV) complexes. , 2011, Inorganic chemistry.

[15]  J. Weiss,et al.  Sensitive and selective detection of zinc ions in neuronal vesicles using PYDPY1, a simple turn-on dipyrrin. , 2011, Chemical communications.

[16]  D. Dolphin,et al.  Far-red absorbing azodipyrrin dyes — Synthesis, X-ray crystallographic, and spectral characterization of 1,9-diazodipyrrins and their metal complexes , 2011 .

[17]  T. Nabeshima,et al.  Structural interconversion and regulation of optical properties of stable hypercoordinate dipyrrin-silicon complexes. , 2011, Journal of the American Chemical Society.

[18]  Sergei A. Vinogradov,et al.  Near infrared dipyrrin-based fluorogenic chelators for metal ions , 2011, BiOS.

[19]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[20]  M. W. Hosseini,et al.  Dipyrrin based silver [2 + 2] metallamacrocycles. , 2011, Dalton transactions.

[21]  Brandon J. Kilduff,et al.  Heterometallic architectures based on the combination of heteroleptic copper and cobalt complexes with silver salts. , 2010, Inorganic chemistry.

[22]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[23]  Jongwook Park,et al.  Enforced Effects of Side Group Substitution Position on Luminescence Properties; Synthesis of Bis(dipyrrinato)zinc Complex Derivatives , 2010 .

[24]  M. W. Hosseini,et al.  Carboxylic acid appended dipyrrin for the formation of a hexanuclear iridium/copper paddlewheel complex. , 2010, Inorganic chemistry.

[25]  S. Baudron,et al.  Dipyrrin based homo- and hetero-metallic infinite architectures , 2010 .

[26]  S. Vinogradov,et al.  Pi-extended dipyrrins capable of highly fluorogenic complexation with metal ions. , 2010, Journal of the American Chemical Society.

[27]  M. W. Hosseini,et al.  Combination of hydrogen and coordination bonding for the construction of one-dimensional networks based on a 7-azaindole appended dipyrrin , 2010 .

[28]  Matthew T. Whited,et al.  Efficient dipyrrin-centered phosphorescence at room temperature from bis-cyclometalated iridium(III) dipyrrinato complexes. , 2010, Inorganic chemistry.

[29]  S. Telfer,et al.  Chromophoric dipyrrin complexes capable of binding to TiO2: synthesis, structure and spectroscopy. , 2010, Dalton transactions.

[30]  L. De Cola,et al.  Dipyrrin based luminescent cyclometallated palladium and platinum complexes. , 2010, Dalton transactions.

[31]  M. W. Hosseini,et al.  Assembly of heteroleptic copper complexes with silver salts: from discrete trinuclear complexes to infinite networks. , 2010, Inorganic chemistry.

[32]  T. Kushida,et al.  Synthesis and reversible control of the fluorescent properties of a divalent tin dipyrromethene. , 2009, Journal of the American Chemical Society.

[33]  M. W. Hosseini,et al.  Combination of primary amide and dipyrrin for the elaboration of extended architectures built upon both coordination and hydrogen bonding , 2009 .

[34]  T. Nabeshima,et al.  Aluminium complexes of N2O2-type dipyrrins: the first hetero-multinuclear complexes of metallo-dipyrrins with high fluorescence quantum yields. , 2009, Chemical communications.

[35]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[36]  J. Sessler,et al.  A bisfullerene-bis(dipyrrinato)zinc complex: electronic coupling and charge separation in an easy-to-assemble synthetic system. , 2009, Chemistry.

[37]  H. Maeda Acyclic oligopyrroles as building blocks of supramolecular assemblies , 2009 .

[38]  S. Telfer,et al.  Metallotectons : Comparison of Molecular Networks Built from Racemic and Enantiomerically Pure Tris(dipyrrinato)cobalt(III) Complexes , 2009 .

[39]  S. Telfer,et al.  Heteroleptic dipyrrin/bipyridine complexes of ruthenium(II). , 2009, Inorganic chemistry.

[40]  M. W. Hosseini,et al.  Many faces of dipyrrins: from hydrogen-bonded networks to homo- and heteronuclear metallamacrocycles. , 2008, Inorganic chemistry.

[41]  Seth M. Cohen,et al.  Rare examples of transition-metal-main-group metal heterometallic metal-organic frameworks from gallium and indium dipyrrinato complexes and silver salts: synthesis and framework variability. , 2007, Inorganic chemistry.

[42]  Seth M. Cohen,et al.  Enantiopure vs. racemic metalloligands: impact on metal-organic framework structure and synthesis. , 2007, Chemical communications.

[43]  N. Zheng,et al.  Cadmium−Porphyrin Coordination Networks: Rich Coordination Modes and Three-Dimensional Four-Connected CdSO4 and (3,5)-Connected hms Nets , 2007 .

[44]  H. Maeda Supramolecular Chemistry of Acyclic Oligopyrroles , 2007 .

[45]  S. Telfer,et al.  Metallotectons: using enantiopure tris(dipyrrinato)cobalt(III) complexes to build chiral molecular materials. , 2007, Chemical communications.

[46]  M. Bröring,et al.  Bis(α,ω-dimethyltripyrrinato)cadmium(II) (Trpy2Cd): Serendipitous finding and structural characterization of an unexpected coordination compound , 2007 .

[47]  M. W. Hosseini,et al.  Beyond classical coordination: silver-pi interactions in metal dipyrrin complexes. , 2007, Chemical communications.

[48]  J. Veciana,et al.  Old materials with new tricks: multifunctional open-framework materials. , 2007, Chemical Society reviews.

[49]  Tabitha E. Wood,et al.  Advances in the chemistry of dipyrrins and their complexes. , 2007, Chemical reviews.

[50]  M. Bröring,et al.  Tripyrrinatocadmium Complexes: Enforcing Supramolecular Aggregation by a Large Ion , 2007 .

[51]  Seth M. Cohen,et al.  Luminescent dipyrrinato complexes of trivalent group 13 metal ions. , 2006, Inorganic chemistry.

[52]  Seth M. Cohen,et al.  Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design. , 2006, Journal of the American Chemical Society.

[53]  Takuya Kakimoto,et al.  Nanoscale spherical architectures fabricated by metal coordination of multiple dipyrrin moieties. , 2006, Journal of the American Chemical Society.

[54]  K. Heinze,et al.  Heteroleptic Cu(II) dipyrromethene complexes linked via hydrogen bonds, coordinative bonds, and covalent bonds: probing the coordination environment by electron paramagnetic resonance spectroscopy. , 2006, Inorganic chemistry.

[55]  Mir Wais Hosseini,et al.  Self-assembly and generation of complexity. , 2005, Chemical communications.

[56]  Seth M. Cohen,et al.  A chiral, heterometallic metal-organic framework derived from a tris(chelate) coordination complex. , 2005, Chemical communications.

[57]  Dewey Holten,et al.  Structural control of the photodynamics of boron-dipyrrin complexes. , 2005, The journal of physical chemistry. B.

[58]  Seth M. Cohen,et al.  Self-assembly of heteroleptic [Cu(dipyrrinato)(hfacac)] complexes directed by fluorine-fluorine interactions. , 2005, Inorganic chemistry.

[59]  C. Serre,et al.  Crystallized frameworks with giant pores: are there limits to the possible? , 2005, Accounts of chemical research.

[60]  Mir Wais Hosseini,et al.  Molecular tectonics: from simple tectons to complex molecular networks. , 2005, Accounts of chemical research.

[61]  Seth M. Cohen,et al.  Heterometallic metal-organic frameworks based on tris(dipyrrinato) coordination complexes. , 2005, Inorganic chemistry.

[62]  Seth M. Cohen,et al.  Helical coordination polymers and cyclic dimers formed from heteroleptic thioether-dipyrrinato copper(II) complexes. , 2004, Chemical communications.

[63]  L. Hwang,et al.  Cadmium complexes of meso-tetra-(p-chlorophenyl)porphyrin: [meso-tetra-(p-chlorophenyl)porphyrinato](pyridine)cadmium(II) pyridine solvate and [meso-tetra-(p-chlorophenyl)porphyrinato](dimethylformamide)cadmium(II) toluene solvate , 2004 .

[64]  Christopher J. Wilson,et al.  Synthesis and structural characterisation of novel bimetallic dipyrromethene complexes: rotational locking of the 5-aryl group. , 2004, Chemical communications.

[65]  Seth M. Cohen,et al.  Self-assembly of two distinct supramolecular motifs in a single crystalline framework. , 2004, Angewandte Chemie.

[66]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[67]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[68]  Seth M. Cohen Prof.,et al.  Self-Assembly of Two Distinct Supramolecular Motifs in a Single Crystalline Framework† , 2004 .

[69]  I. Sazanovich,et al.  Structural control of the excited-state dynamics of bis(dipyrrinato)zinc complexes: self-assembling chromophores for light-harvesting architectures. , 2004, Journal of the American Chemical Society.

[70]  Seth M. Cohen,et al.  Heteroleptic copper dipyrromethene complexes: synthesis, structure, and coordination polymers. , 2004, Inorganic chemistry.

[71]  I. Sazanovich,et al.  Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening Bis(dipyrrinato)metal complex. , 2003, Inorganic chemistry.

[72]  J. Lindsey,et al.  A Scalable Synthesis of Meso-Substituted Dipyrromethanes , 2003 .

[73]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[74]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[75]  P. D. Rao,et al.  Rational syntheses of porphyrins bearing up to four different meso substituents. , 2000, The Journal of organic chemistry.

[76]  Gerhard F. Swiegers,et al.  New Self-Assembled Structural Motifs in Coordination Chemistry (Chem. Rev. 2000, 100, xxxx. Published on the Web July 15, 2000.). , 2000, Chemical reviews.

[77]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[78]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[79]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[80]  Kevin M. Smith,et al.  Metal ion-induced self assembly of open-chain tetrapyrrole derivatives: Double stranded dinuclear complexes from 10-oxo-5,15-biladienes , 1998 .

[81]  M. Thompson,et al.  Direct synthesis of aryldipyrromethanes , 1994 .

[82]  Y. Hsiou,et al.  Porphyrin sponges: conservative of host structure in over 200 porphyrin-based lattice clathrates , 1993 .

[83]  James D. Wuest,et al.  Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers , 1991 .

[84]  V. Lynch,et al.  Binding of pyridine and benzimidazole to a cadmium "expanded porphyrin": solution and x-ray structural studies , 1989 .

[85]  Jun Shen,et al.  Thermal lens measurement of absolute quantum yields using quenched fluorescent samples as references , 1989 .

[86]  J. Demas,et al.  Quantum efficiencies of transition-metal complexes. I. d-d Luminescence , 1970 .

[87]  M. Hasegawa,et al.  Dipyrrin Zn(II) complexes with functional aryl groups: formation, characterization, and structures in the solid state. , 2009, Journal of nanoscience and nanotechnology.

[88]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[89]  F. Jian,et al.  Synthesis, Characterization and Crystal Structure of (α-Aminopyridine-N)-(5,10,15,20-tetraphenylporphyrinato) Cadmium(II) Acetone Solvate , 2006 .

[90]  V. Lynch,et al.  An "expanded porphyrin": the synthesis and structure of a new aromatic pentadentate ligand , 1988 .

[91]  W. Robinson,et al.  Dipyrromethene complexes of transition metals. Part II. Stereochemistry of complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), mercury(II), and palladium(II) and crystal structure analysis of the palladium complex , 1971 .

[92]  C. R. Porter 74. The stereochemistry of metallic derivatives of pyrromethenes , 1938 .