Comparison of contact metals evaporated onto monolayer molybdenum disulfide

Understanding and improving the contact resistance of two-dimensional materials for the fabrication of next-generation devices is of vital importance to be able to fully utilize the new physics available in these materials. In this work, eight different contact metals (Ag, Au, Cr, Cu, In, Mo, Ni, and Ti) have been investigated using the same sample of monolayer MoS2. Through the fabrication and testing of multiple, identically sized field-effect transistor devices per contact metal, we compensate for large variability in electrical properties of as-grown chemical vapor deposition MoS2 and deduce the relative performance of each metal. The general trend of lower work function metals having lower contact resistance holds with In, Ag, and Ti performing the best of the metals tested. Our results are compatible with recent research suggesting that the contact resistance in undoped, monolayer MoS2 is dominated by a lateral junction resistance, and we provide context for how this manifests in device-to-device variation. Multiple orders of magnitude differences in contact resistance are observed between metals and can be explained by this lateral barrier operating in the thermionic-field emission regime.

[1]  A. Davydov,et al.  Are 2D Interfaces Really Flat? , 2022, ACS nano.

[2]  I. Esqueda,et al.  Analysis of Schottky barrier heights and reduced Fermi-level pinning in monolayer CVD-grown MoS2 field-effect-transistors , 2022, Nanotechnology.

[3]  Qingliang Liao,et al.  Record-high saturation current in end-bond contacted monolayer MoS2 transistors , 2021, Nano Research.

[4]  J. Bokor,et al.  Ultralow contact resistance between semimetal and monolayer semiconductors , 2021, Nature.

[5]  X. Duan,et al.  Promises and prospects of two-dimensional transistors , 2021, Nature.

[6]  J. Redwing,et al.  Benchmarking monolayer MoS2 and WS2 field-effect transistors , 2021, Nature communications.

[7]  K. Ang,et al.  Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing , 2021, npj 2D Materials and Applications.

[8]  Sekhar Babu Mitta,et al.  Electrical characterization of 2D materials-based field-effect transistors , 2020, 2D Materials.

[9]  E. Pop,et al.  Uncovering the Effects of Metal Contacts on Monolayer MoS2. , 2020, ACS nano.

[10]  Jens Martin,et al.  Low Schottky barrier contacts to 2H-MoS2by Sn electrodes , 2020 .

[11]  Jing Lu,et al.  Reexamination of the Schottky Barrier Heights in Monolayer MoS2 Field-Effect Transistors , 2019, ACS Applied Nano Materials.

[12]  Manjot Kaur,et al.  A synoptic review of MoS2: Synthesis to applications , 2019, Superlattices and Microstructures.

[13]  H. Jeong,et al.  Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors , 2019, Nature.

[14]  J. Teherani,et al.  Erratum: “Electrostatics of lateral p-n junctions in atomically thin materials” [J. Appl. Phys. 122, 194501 (2017)] , 2018, Journal of Applied Physics.

[15]  Steven G. Noyce,et al.  Immunity to Contact Scaling in MoS2 Transistors Using in Situ Edge Contacts. , 2018, Nano letters.

[16]  X. Duan,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[17]  Anna C. Domask,et al.  Room Temperature van der Waals Epitaxy of Metal Thin Films on Molybdenum Disulfide , 2018 .

[18]  T. Ihn,et al.  Gate-Tunable Quantum Dot in a High Quality Single Layer MoS$_{\mathrm{2}}$ Van der Waals Heterostructure , 2018, 1801.00452.

[19]  P. Hopkins,et al.  Titanium contacts to graphene: process-induced variability in electronic and thermal transport , 2017, Nanotechnology.

[20]  J. Teherani,et al.  Electrostatics of lateral p-n junctions in atomically thin materials , 2017 .

[21]  Q. Yao,et al.  Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts , 2017, ACS applied materials & interfaces.

[22]  S. Lim,et al.  Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS2 Field-Effect Transistors. , 2017, ACS applied materials & interfaces.

[23]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[24]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[25]  Jing Kong,et al.  MoS2 Field-Effect Transistor with Sub-10 nm Channel Length. , 2016, Nano letters.

[26]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[27]  Christopher M. Smyth,et al.  Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2-Based Device Performance , 2016 .

[28]  Eric Pop,et al.  Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. , 2016, Nano letters.

[29]  Robert M. Wallace,et al.  MoS2-Titanium Contact Interface Reactions. , 2016, ACS applied materials & interfaces.

[30]  Seunghyun Lee,et al.  Statistical Study on the Schottky Barrier Reduction of Tunneling Contacts to CVD Synthesized MoS2. , 2016, Nano letters.

[31]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[32]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[33]  Kaustav Banerjee,et al.  High-performance MoS2 transistors with low-resistance molybdenum contacts , 2014 .

[34]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[35]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[36]  K. Varahramyan,et al.  A model for specific contact resistance applicable for titanium silicide-silicon contacts , 1996 .

[37]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[38]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[39]  A. Yu,et al.  Electron tunneling and contact resistance of metal-silicon contact barriers , 1970 .

[40]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .