A Pumping Lemma and Decidability Problems for Recognizable Tree Series

In the present paper we show that given a tree series S, which is accepted by (a) a deterministic bottom-up finite state weighted tree automaton (for short: bu-w-fta) or (b) a non-deterministic bu-w-fta over a locally finite semiring, there exists for every input tree t ∈ supp(S) a decomposition t = C'[C[s]] into contexts C, C' and an input tree s as well as there exist semiring elements a, a', b, b', c such that the equation (S, C'[Cn[s]]) = a' ⊙ an ⊙ c ⊙ bn ⊙ b' holds for every non-negative integer n. In order to prove this pumping lemma we extend the power-set construction of classical theories and show that for every non-deterministic bu-w-fta over a locally finite semiring there exists an equivalent deterministic one. By applying the pumping lemma we prove the decidability of a tree series S being constant on its support, S being constant, S being boolean, the support of S being the empty set, and the support of S being a finite set provided that S is accepted by (a) a deterministic bu-w-fta over a commutative semiring or (b) a non-deterministic bu-w-fta over a locally finite commutative semiring.

[1]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[2]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[3]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[4]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[5]  Editors , 1986, Brain Research Bulletin.

[6]  Symeon Bozapalidis,et al.  Weighted Grammars and Kleene's Theorem , 1987, Inf. Process. Lett..

[7]  M. W. Shields An Introduction to Automata Theory , 1988 .

[8]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[9]  Symeon Bozapalidis,et al.  Représentations Matricielles Des Séries D'Arbre Reconnaissables , 1989, RAIRO Theor. Informatics Appl..

[10]  Reinhard Wilhelm,et al.  Tree automata for code selection , 1994, Acta Informatica.

[11]  S. Bozapalidis Effective construction of the syntactic algebra of a recognizable series on trees , 1992 .

[12]  Symeon Bozapalidis,et al.  Representable Tree Series , 1994, Fundam. Informaticae.

[13]  Helmut Seidl Finite Tree Automata with Cost Functions , 1994, Theor. Comput. Sci..

[14]  Werner Kuich Formal Power Series over Trees , 1997, Developments in Language Theory.

[15]  Symeon Bozapalidis Positive Tree Representations and Applications to Tree Automata , 1997, Inf. Comput..

[16]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[17]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[18]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[19]  U. Hebisch,et al.  Semirings: Algebraic Theory and Applications in Computer Science , 1998 .

[20]  Werner Kuich Tree Transducers and Formal Tree Series , 1999, Acta Cybern..

[21]  Symeon Bozapalidis Equational Elements in Additive Algebras , 1999, Theory of Computing Systems.

[22]  Raffaele Giancarlo,et al.  On the Determinization of Weighted Finite Automata , 2000, SIAM J. Comput..

[23]  Symeon Bozapalidis Context-Free Series on Trees , 2001, Inf. Comput..

[24]  Berndt Farwer,et al.  ω-automata , 2002 .

[25]  Joost Engelfriet,et al.  Bottom-Up and Top-Down Tree Series Transformations , 2001, J. Autom. Lang. Comb..

[26]  Zoltán Ésik,et al.  Formal Tree Series , 2002, J. Autom. Lang. Comb..

[27]  Heiko Vogler,et al.  Determinization of Finite State Weighted Tree Automata , 2003, J. Autom. Lang. Comb..

[28]  Zoltán Fülöp,et al.  Tree Series Transformations that Respect Copying , 2003, Theory of Computing Systems.

[29]  Björn Borchardt The Myhill-Nerode Theorem for Recognizable Tree Series , 2003, Developments in Language Theory.

[30]  Manfred Droste,et al.  A Kleene Theorem for Weighted Tree Automata , 2004, Theory of Computing Systems.

[31]  Joost Engelfriet,et al.  Bottom-up and top-down tree transformations— a comparison , 1975, Mathematical systems theory.

[32]  Manfred Droste,et al.  Skew and infinitary formal power series , 2003, Theor. Comput. Sci..

[33]  Ferenc Gécseg,et al.  Tree Automata , 2015, ArXiv.