Atomic and electronic structure of the nonpolar GaN ( 1 1 ¯ 00 ) surface

We present a cross-section scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS) and ab initio density-functional theory simulations study of the cleaved nonpolar $(1\overline{1}00)$ surface ($m$-plane) of $n$-type HVPE GaN free-standing quasisubstrates. Atomically resolved empty and filled states STM topographies show that no reconstruction occurs upon cleavage, as predicted by theory. STS measurements on clean and atomically flat cleaved surfaces (defect concentration ${\ensuremath{\sigma}}_{d}\ensuremath{\le}2\ifmmode\times\else\texttimes\fi{}{10}^{12}\text{ }{\text{cm}}^{\ensuremath{-}2}$) show that the Fermi energy is not pinned and the tunneling current flows through Ga-like electronic states lying outside the fundamental band gap. On surface areas with defect concentration ${\ensuremath{\sigma}}_{d}\ensuremath{\ge}3\ifmmode\times\else\texttimes\fi{}{10}^{13}\text{ }{\text{cm}}^{\ensuremath{-}2}$, the Fermi energy is pinned inside the band gap in defect-derived surface states and tunneling through filled (empty) N-like (Ga-like) states takes place.

[1]  Theory of the scanning tunneling microscope , 1985 .

[2]  R. Feenstra,et al.  Tunneling spectroscopy of the GaAs(110) surface , 1987 .

[3]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[4]  Dm Dominique Bruls,et al.  Interplay between tip-induced band bending and voltage-dependent surface corrugation on GaAs(110) surfaces , 2002 .

[5]  C. D. Lee,et al.  Morphology and surface reconstructions of GaN(1100) surfaces , 2003 .

[6]  A. Catellani,et al.  Polarization properties of (1(1)over-bar00) and (11(2)over-bar0) SiC surfaces from first principles , 2007 .

[7]  S. Nakamura Current Status of GaN-Based Solid-State Lighting , 2009 .

[8]  J. Brault,et al.  Gallium adsorption on (0001) GaN surfaces , 2003 .

[9]  M. Scheffler,et al.  Adatom diffusion at GaN (0001) and (0001̄) surfaces , 1998, cond-mat/9809006.

[10]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[11]  Theeradetch Detchprohm,et al.  GaInN∕GaN growth optimization for high-power green light-emitting diodes , 2004 .

[12]  R. Hamers Atomic-Resolution Surface Spectroscopy with the Scanning Tunneling Microscope , 1989 .

[13]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[14]  Edward A. Preble,et al.  Green light emitting diodes on a-plane GaN bulk substrates , 2008 .

[15]  K. Besocke,et al.  An easily operable scanning tunneling microscope , 1987 .

[16]  Anomalous relaxations and chemical trends at III-V semiconductor nitride nonpolar surfaces , 1998, cond-mat/9805220.

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  H. Eisele,et al.  Surface states and origin of the Fermi level pinning on nonpolar GaN(11¯00) surfaces , 2008 .

[19]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[20]  Masashi Kubota,et al.  Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm , 2009 .

[21]  W. Schattke,et al.  Angle Resolved Photoemission Spectroscopy of GaN (101‐0): Experiment and Theory , 1999 .

[22]  Mi-Yang Kim,et al.  Characteristics of long wavelength InGaN quantum well laser diodes , 2008 .

[23]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[24]  Jörg Neugebauer,et al.  Structure of GaN(0001): The laterally contracted Ga bilayer model , 2000 .