Topological Queries in Spatial Databases

We studytopological queriesover two-dimensional spatial databases. First, we show that the topological properties of semi-algebraic spatial regions can be completely specified using a classical finite structure, essentially the embedded planar graph of the region boundaries. This provides aninvariantcharacterizing semi-algebraic regions up to homeomorphism. All topological queries on semi-algebraic regions can be answered by queries on the invariant whose complexity is polynomially related to the original. Also, we show that for the purpose of answering topological queries, semi-algebraic regions can always be represented simply as polygonal regions. We then study query languages for topological properties of two-dimensional spatial databases, starting from the topological relationships between pairs of planar regions introduced by Egenhofer. We show that the closure of these relationships under appropriate logical operators yields languages which arecompletefor topological properties. This provides a theoreticala posteriorijustification for the choice of these particular relationships. Unlike the point-based languages studied in previous work on constraint databases, our languages are region based?quantifiers range over regions in the plane. This yields a family of languages, whose complexity ranges fromNCto undecidable. Another type of completeness result shows that the region-based language of complexityNCexpresses precisely the same topological properties as well-known point-based languages.

[1]  Marc Gyssens,et al.  Linear-Constraint Databases , 2000 .

[2]  Jianwen Su,et al.  Finitely Representable Databases , 1997, J. Comput. Syst. Sci..

[3]  Dina Q. Goldin,et al.  Constraint Programming and Database Query Languages , 1994, TACS.

[4]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[5]  Ralf Hartmut Güting,et al.  An introduction to spatial database systems , 1994, VLDB J..

[6]  Serge Abiteboul,et al.  Computing with Infinitary Logic , 1995, Theor. Comput. Sci..

[7]  Jan Paredaens,et al.  Towards a theory of spatial database queries (extended abstract) , 1994, PODS.

[8]  Max J. Egenhofer,et al.  A Formal Definition of Binary Topological Relationships , 1989, FODO.

[9]  Michael F. Worboys,et al.  A generic model for planar geographical objects , 1992, Int. J. Geogr. Inf. Sci..

[10]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[11]  Joseph JáJá,et al.  Parallel Algorithms in Graph Theory: Planarity Testing , 1982, SIAM J. Comput..

[12]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[13]  Dimitris Papadias,et al.  Topological Inference , 1995, IJCAI.

[14]  Jianwen Su,et al.  Linear Constraint Query Languages: Expressive Power and Complexity , 1994, LCC.

[15]  Anthony G. Cohn,et al.  Modelling Topological and Metrical Properties in Physical Processes , 1989, KR.

[16]  James Clifford,et al.  Recent Advances in Temporal Databases , 1995, Workshops in Computing.

[17]  D. V. Gucht,et al.  First-order queries on finite structures over the reals , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[18]  K. Jon Barwise,et al.  On Moschovakis closure ordinals , 1977, Journal of Symbolic Logic.

[19]  MAX J. EGENHOFER,et al.  Point Set Topological Relations , 1991, Int. J. Geogr. Inf. Sci..

[20]  Derek Thompson,et al.  Fundamentals of spatial information systems , 1992, A.P.I.C. series.

[21]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[22]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[23]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[24]  P. J. van Oosterom,et al.  Building GIS on Top of the Open DBMS 'Postgres' (Het Bouwen van een GIS op Basis van het Open DBMS 'Postgres') , 1991 .

[25]  Stéphane Grumbach,et al.  Dense-Order Constraint Databases. , 1995, PODS 1995.

[26]  John R. Herring TIGRIS: a data model for an object-oriented geographic information system , 1992 .

[27]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[28]  llsoo Ahn,et al.  Temporal Databases , 1986, Computer.

[29]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[30]  Max J. Egenhofer,et al.  On the Equivalence of Topological Relations , 1995, Int. J. Geogr. Inf. Sci..

[31]  Joshua Zhexue Huang,et al.  Geo-SAL: A Query Language for Spatial Data Analysis , 1991, SSD.

[32]  Max J. Egenhofer,et al.  Spatial SQL: A Query and Presentation Language , 1994, IEEE Trans. Knowl. Data Eng..

[33]  W. T. Tutte How to Draw a Graph , 1963 .

[34]  Nicola Guarino,et al.  Formal ontology, conceptual analysis and knowledge representation , 1995, Int. J. Hum. Comput. Stud..

[35]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[36]  Chee-Keng Yap,et al.  Algebraic cell decomposition in NC , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[37]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[38]  Anthony G. Cohn,et al.  Taxonomies of logically defined qualitative spatial relations , 1995, Int. J. Hum. Comput. Stud..

[39]  Jan Paredaens,et al.  Spatial Databases, The Final Frontier , 1995, ICDT.

[40]  E. Moise Geometric Topology in Dimensions 2 and 3 , 1977 .

[41]  Max J. Egenhofer,et al.  Topological spatial relations based on components and dimensions of set intersections , 1993, Other Conferences.

[42]  A. Frank,et al.  Cell Graphs: A Provable Correct Method for the Storage of Geometry * , 1986 .

[43]  Serge Abiteboul,et al.  Temporal Connectives versus Explicit Timestamps in Temporal Query Languages , 1995, Temporal Databases.

[44]  Jan Van den Bussche,et al.  Lossless Representation of Topological Spatial Data , 1995, SSD.

[45]  Robert E. Tarjan,et al.  Intersection graphs of curves in the plane , 1976, J. Comb. Theory, Ser. B.

[46]  J. Stillwell Classical topology and combinatorial group theory , 1980 .