The Effect of Star Formation History on the Inferred Stellar Initial Mass Function

Peaks and lulls in the star formation rate (SFR) over the history of the Galaxy produce plateaus and declines in the present-day mass function (PDMF) where the main-sequence lifetime overlaps the age and duration of the SFR variation. These PDMF features can be misinterpreted as the form of the intrinsic stellar initial mass function (IMF) if the star formation rate is assumed to be constant or slowly varying with time. This effect applies to all regions that have formed stars for longer than the age of the most massive stars, including OB associations, star complexes, and especially galactic field stars. Related problems may apply to embedded clusters. Evidence is summarized for temporal SFR variations from parsec scales to entire galaxies, all of which should contribute to inferred IMF distortions. We give examples of various star formation histories to demonstrate the types of false IMF structures that might be seen. These include short-duration bursts, stochastic histories with lognormal amplitude distributions, and oscillating histories with various periods and phases. The inferred IMF should appear steeper than the intrinsic IMF over mass ranges where the stellar lifetimes correspond to times of decreasing SFRs; shallow portions of the inferred IMF correspond to times of increasing SFRs. If field regions are populated by dispersed clusters and defined by their low current SFRs, then they should have steeper inferred IMFs than the clusters. The SFRs required to give the steep field IMFs in the LMC and SMC are determined. Structure observed in several determinations of the Milky Way field star IMF can be accounted for by a stochastic and bursty star formation history.

[1]  Lynne A. Hillenbrand,et al.  Constraints on the Stellar/Substellar Mass Function in the Inner Orion Nebula Cluster , 2000 .

[2]  B. Elmegreen Variability in the stellar initial mass function at low and high mass: three‐component IMF models , 2004, astro-ph/0408231.

[3]  F. Palla,et al.  Star Formation in Space and Time: Taurus-Auriga , 2002, astro-ph/0208554.

[4]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[5]  L. Hillenbrand On the Stellar Population and Star-Forming History of the Orion Nebula Cluster , 1997 .

[6]  Mark Clampin,et al.  The Low End of the Initial Mass Function in Young Large Magellanic Cloud Clusters. I. The Case of R136 , 2000 .

[7]  A. Bressan,et al.  The star formation history of the Large Magellanic Cloud , 1992 .

[8]  B. Pagel,et al.  Galactic archaeology: initial mass function and depletion in the ‘thin disc’ , 2003, astro-ph/0303013.

[9]  P. Massey,et al.  Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud , 2000, astro-ph/0012142.

[10]  D. C. Barry The Chromospheric Age Dependence of the Birthrate, Composition, Motions, and Rotation of Late F and G Dwarfs within 25 Parsecs of the Sun , 1988 .

[11]  The recent star formation history of the Hipparcos solar neighbourhood , 2000, astro-ph/0003113.

[12]  Eva K. Grebel,et al.  Accepted by the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 11/12/01 IMPACT OF REIONIZATION ON THE STELLAR POPULATIONS OF NEARBY DWARF GALAXIES , 2004 .

[13]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[14]  Karl Glazebrook,et al.  Measurement of the star formation rate from Hα in field galaxies at z=1 , 1998 .

[15]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[16]  Star Formation Histories of Nearby Dwarf Galaxies , 2000, astro-ph/0011048.

[17]  D. Hunter STAR FORMATION IN IRREGULAR GALAXIES: A REVIEW OF SEVERAL KEY QUESTIONS , 1997 .

[18]  B. Elmegreen A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.

[19]  P. Massey,et al.  Massive stars in the field and associations of the magellanic clouds: The upper mass limit, the initial mass function, and a critical test of main-sequence stellar evolutionary theory , 1995 .

[20]  P. Kroupa,et al.  Galactic-Field Initial Mass Functions of Massive Stars , 2003 .

[21]  H. Rocha-Pinto,et al.  Chemical enrichment and star formation in the Milky Way disk - III. Chemodynamical constraints , 2004, astro-ph/0405468.

[22]  S. Basu,et al.  Multiplicity-corrected mass function of main-sequence stars in the solar neighborhood , 1992 .

[23]  J. Young,et al.  CO Luminosity Functions for Far-Infrared- and B-Band-selected Galaxies and the First Estimate for ΩHi + H2 , 2002, astro-ph/0209413.

[24]  J. Scalo The stellar initial mass function , 1986 .

[25]  G. Hill,et al.  Specific Star Formation Rates to Redshift 1.5 , 2004, astro-ph/0412358.

[26]  An Intermittent Star Formation History in a "Normal" Disk Galaxy: The Milky Way. , 1999, The Astrophysical journal.

[27]  W. Sargent,et al.  Inferences from the Composition of Two Dwarf Blue Galaxies , 1972 .

[28]  Cambridge,et al.  A Comparison of Independent Star Formation Diagnostics for an Ultraviolet-selected Sample of Nearby Galaxies , 2001, astro-ph/0104425.

[29]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[30]  The Evolutionary Status of Isolated Dwarf Irregular Galaxies. II. Star Formation Histories and Gas Depletion , 2001, astro-ph/0101135.

[31]  T. Henning,et al.  The Initial Mass Function toward the Low-Mass End in the Large Magellanic Cloud with Hubble Space Telescope WFPC2 Observations , 2004, astro-ph/0411448.

[32]  D. Weinberg,et al.  Non-Gaussian fluctuations and the statistics of galaxy clustering , 1992 .

[33]  P. Massey A UBVR CCD Survey of the Magellanic Clouds , 2001, astro-ph/0110531.

[34]  D. Calzetti,et al.  Star Formation in the Field and Clusters of NGC 5253 , 2001, astro-ph/0103432.

[35]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics , 2002 .

[36]  D. Fabricant,et al.  Physical Sources of Scatter in the Tully-Fisher Relation , 2002, astro-ph/0202111.

[37]  Bruce G. Elmegreen,et al.  The Initial Stellar Mass Function from Random Sampling in a Turbulent Fractal Cloud , 1997 .

[38]  G. Walker,et al.  The Star Formation History of Trumpler 14 and Trumpler 16 , 2001 .

[39]  J. Binney Radial mixing in galactic discs , 2002, astro-ph/0203510.

[40]  Pavel Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[41]  Galactic-Field IMFs of Massive Stars , 2003, astro-ph/0308356.

[42]  F. Palla,et al.  Accelerating Star Formation in Clusters and Associations , 2000 .

[43]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[44]  B. Elmegreen The Stellar Initial Mass Function from Random Sampling in Hierarchical Clouds. II. Statistical Fluctuations and a Mass Dependence for Starbirth Positions and Times , 1998, astro-ph/9811287.

[45]  G. Östlin,et al.  The most metal-poor galaxies , 1999, astro-ph/9911094.

[46]  M. S. Roberts,et al.  Physical Parameters Along the Hubble Sequence , 1994 .

[47]  Ultraviolet Imaging Telescope Observations of the Magellanic Clouds , 1998 .

[48]  S. N. Raines,et al.  A Study of the Luminosity and Mass Functions of the Young IC 348 Cluster Using FLAMINGOS Wide-Field Near-Infrared Images , 2003, The Astronomical Journal.

[49]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[50]  H. Rix,et al.  Lopsided Galaxies, Weak Interactions, and Boosting the Star Formation Rate , 2000, astro-ph/0003109.

[51]  N. C. Rana Chemical Evolution of the Galaxy , 1991 .

[52]  S. Majewski Galactic Structure Surveys and the Evolution of the Milky Way , 1993 .

[53]  J. Scalo,et al.  History of the Milky Way star formation rate from the white dwarf luminosity function , 1990 .

[54]  R. Walterbos,et al.  Far-Ultraviolet and Hα Imaging of Nearby Spiral Galaxies: The OB Stellar Population in the Diffuse Ionized Gas , 2001, astro-ph/0107449.

[55]  R. D. L. F. Marcos,et al.  On the recent star formation history of the Milky Way disk , 2004, astro-ph/0401360.

[56]  New constraints on the star formation histories and dust attenuation of galaxies in the local universe from GALEX , 2004, astro-ph/0411354.

[57]  Mordecai-Mark Mac Low,et al.  The Formation of Stellar Clusters in Turbulent Molecular Clouds: Effects of the Equation of State , 2002, astro-ph/0210479.

[58]  Astronomy,et al.  Star Formation Rates of Local Blue Compact Dwarf Galaxies. I. 1.4 GHz and 60 Micron Luminosities , 2002, astro-ph/0204528.

[59]  P. Hodge Populations in Local Group Galaxies , 1989 .

[60]  J. Holtzman,et al.  Main-Sequence Stars and the Star Formation History of the Outer Disk in the Large Magellanic Cloud , 1996 .

[61]  U. Cambridge,et al.  Mass segregation in young compact star clusters in the Large Magellanic Cloud — II. Mass functions , 2001, astro-ph/0111312.

[62]  E. Grebel,et al.  Modes of star formation and the origin of field populations : proceedings of a workshop held at Max-Planck Institute of Astronomy, Heidelberg, Germany, 9-13 October 2000 , 2002 .