A reference length approach for the 3D strip packing problem

In the three-dimensional strip packing problem (3DSP), we are given a container with an open dimension and a set of rectangular cuboids (boxes) and the task is to orthogonally pack all the boxes into the container such that the magnitude of the open dimension is minimized. We propose a block building heuristic based on extreme points for this problem that uses a reference length to guide its solution. Our 3DSP approach employs this heuristic in a one-step lookahead tree search algorithm using an iterative construction strategy. We tested our approach on standard 3DSP benchmark test data; the results show that our approach produces better solutions on average than all other approaches in literature for the majority of these data sets using comparable computation time.

[1]  Teodor Gabriel Crainic,et al.  Extreme Point-Based Heuristics for Three-Dimensional Bin Packing , 2008, INFORMS J. Comput..

[2]  Eberhard E. Bischoff,et al.  Weight distribution considerations in container loading , 1999, Eur. J. Oper. Res..

[3]  Bernard Chazelle,et al.  The Bottomn-Left Bin-Packing Heuristic: An Efficient Implementation , 1983, IEEE Transactions on Computers.

[4]  Hermann Gehring,et al.  A hybrid genetic algorithm for the container loading problem , 2001, Eur. J. Oper. Res..

[5]  Ansheng Deng,et al.  A new heuristic recursive algorithm for the strip rectangular packing problem , 2006, Comput. Oper. Res..

[6]  Graham Kendall,et al.  A New Placement Heuristic for the Orthogonal Stock-Cutting Problem , 2004, Oper. Res..

[7]  Graham Kendall,et al.  A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem , 2009, INFORMS J. Comput..

[8]  Stephen C. H. Leung,et al.  A New Heuristic Approach for the Stock- Cutting Problems , 2009 .

[9]  Jan Riehme,et al.  An efficient approach for the multi-pallet loading problem , 2000, Eur. J. Oper. Res..

[10]  Yong Wu,et al.  A global search framework for practical three-dimensional packing with variable carton orientations , 2012, Comput. Oper. Res..

[11]  Chak-Kuen Wong,et al.  An effective quasi-human based heuristic for solving the rectangle packing problem , 2002, Eur. J. Oper. Res..

[12]  E. E. Bischoff,et al.  Issues in the development of approaches to container loading , 1995 .

[13]  Chen Huo-Wang,et al.  A Combinational Heuristic Algorithm for the Three-Dimensional Packing Problem , 2007 .

[14]  Ramón Alvarez-Valdés,et al.  A Maximal-Space Algorithm for the Container Loading Problem , 2008, INFORMS J. Comput..

[15]  Y. Li,et al.  Greedy algorithms for packing unequal circles into a rectangular container , 2005, J. Oper. Res. Soc..

[16]  Klaus Jansen,et al.  An asymptotic approximation algorithm for 3D-strip packing , 2006, SODA '06.

[17]  Mhand Hifi,et al.  Exact algorithms for the guillotine strip cutting/packing problem , 1998, Comput. Oper. Res..

[18]  Ramón Alvarez-Valdés,et al.  Neighborhood structures for the container loading problem: a VNS implementation , 2010, J. Heuristics.

[19]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[20]  Daniele Vigo,et al.  An Exact Approach to the Strip-Packing Problem , 2003, INFORMS J. Comput..

[21]  David Pisinger,et al.  Heuristics for the container loading problem , 2002, Eur. J. Oper. Res..

[22]  Guochuan Zhang,et al.  Harmonic algorithm for 3-dimensional strip packing problem , 2007, SODA '07.

[23]  Hiroshi Nagamochi,et al.  Exact algorithms for the two-dimensional strip packing problem with and without rotations , 2009, Eur. J. Oper. Res..

[24]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[25]  Korhan Karabulut,et al.  A Hybrid Genetic Algorithm for Packing in 3D with Deepest Bottom Left with Fill Method , 2004, ADVIS.

[26]  Defu Zhang,et al.  A Meta-heuristic Algorithm for the Strip Rectangular Packing Problem , 2005, ICNC.

[27]  Ender Özcan,et al.  Bidirectional best-fit heuristic for orthogonal rectangular strip packing , 2009, Ann. Oper. Res..

[28]  Yu Li,et al.  New heuristics for packing unequal circles into a circular container , 2006, Comput. Oper. Res..

[29]  Graham Kendall,et al.  A hybrid placement strategy for the three-dimensional strip packing problem , 2011, Eur. J. Oper. Res..

[30]  Andreas Bortfeldt,et al.  A Tree Search Algorithm for Solving the Container Loading Problem , 2010, INFORMS J. Comput..

[31]  Wee-Chong Oon,et al.  The 6 key elements to SCLP block building approaches , 2010, 2010 International Conference on Educational and Information Technology.

[32]  Andreas Bortfeldt,et al.  A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces , 2006, Eur. J. Oper. Res..

[33]  Ramón Alvarez-Valdés,et al.  Reactive GRASP for the strip-packing problem , 2008, Comput. Oper. Res..

[34]  Daniel Mack,et al.  A heuristic for the three-dimensional strip packing problem , 2007, Eur. J. Oper. Res..