Time-resolved amplified spontaneous emission in quantum dots

In time-resolved experiments at InGaAs/GaAs quantum-dots-in-a-well (DWELL) semiconductor optical amplifiers, pump-probe of the ground state (GS) population, and complementary measurement of the amplified spontaneous emission of the excited state (ES) population, we are able to separate the early subpicosecond dephasing dynamics from the later picosecond population relaxation dynamics. We observe a 10 ps delay between the nonlinear GS pulse amplification and the subsequent ES population drop-off that supports the dominance of a direct two dimensional reservoir-GS capture relaxation path in electrically pumped quantum-dot-DWELL structures.

[1]  G. Eisenstein,et al.  Role of carrier reservoirs on the slow phase recovery of quantum dot semiconductor optical amplifiers , 2009 .

[2]  Gottfried Strasser,et al.  Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots , 2003 .

[3]  Jörg Siegert,et al.  Carrier dynamics in modulation-doped InAs/GaAs quantum dots , 2005 .

[4]  Albrecht,et al.  Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots. , 1996, Physical review. B, Condensed matter.

[5]  T. Vallaitis,et al.  High-Speed Small-Signal Cross-Gain Modulation in Quantum-Dot Semiconductor Optical Amplifiers at 1.3 $\mu$m , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  D. Bimberg,et al.  InGaAs Quantum Dots Coupled to a Reservoir of Nonequilibrium Free Carriers , 2009, IEEE Journal of Quantum Electronics.

[7]  M. Laemmlin,et al.  Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier , 2007 .

[8]  M. Bayer,et al.  Carrier relaxation dynamics in self-assembled semiconductor quantum dots , 2009 .

[9]  S. Mikhrin,et al.  Ultrafast gain dynamics in 1.3 μm InAs/GaAs quantum-dot optical amplifiers: The effect of p doping , 2007 .

[10]  R. S. Attaluri,et al.  Density-dependent carrier dynamics in a quantum dots-in-a-well heterostructure , 2010 .

[11]  Nikolai N. Ledentsov,et al.  High speed nanophotonic devices based on quantum dots , 2006 .

[12]  John Houlihan,et al.  Phase dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers , 2007 .

[13]  R. Manning,et al.  Carrier capture dynamics of InAs∕GaAs quantum dots , 2007 .

[14]  D. Bimberg,et al.  Excited-state gain dynamics in InGaAs quantum-dot amplifiers , 2005, IEEE Photonics Technology Letters.

[15]  Tomoyuki Akiyama,et al.  Pattern-effect-free semiconductor optical amplifier achieved using quantum dots , 2002 .

[16]  E. Schöll,et al.  Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots. , 2008, Physical review letters.

[17]  E. Viktorov,et al.  The fast recovery dynamics of a quantum dot semiconductor optical amplifier , 2009 .

[18]  John Houlihan,et al.  Electron and hole dynamics of InAs∕GaAs quantum dot semiconductor optical amplifiers , 2007 .

[19]  Y. Arakawa,et al.  Photon lifetime dependence of modulation efficiency and K factor in 1.3μm self-assembled InAs∕GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth , 2004 .

[20]  J. Mørk,et al.  Separation of coherent and incoherent nonlinearities in a heterodyne pump-probe experiment. , 2000, Optics express.

[21]  T. W. Berg,et al.  Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices , 2001, IEEE Photonics Technology Letters.

[22]  M. Kuntz,et al.  Hybrid mode-locking in a 40 GHz monolithic quantum dot laser , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.