Automata and Quantum Computing

Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers.

[1]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[2]  Maksim Kravtsev,et al.  Quantum Finite Automata and Probabilistic Reversible Automata: R-trivial Idempotent Languages , 2011, MFCS.

[3]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[4]  Brendan Juba On learning finite-state quantum sources , 2012, Quantum Inf. Comput..

[5]  Mika Hirvensalo,et al.  Classical and quantum realtime alternating automata , 2014, NCMA.

[6]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[7]  Viliam Geffert,et al.  Classical Automata on Promise Problems , 2014, Discret. Math. Theor. Comput. Sci..

[8]  Andris Ambainis,et al.  Improved constructions of quantum automata , 2009, Theor. Comput. Sci..

[9]  Andris Ambainis,et al.  Probabilities to Accept Languages by Quantum Finite Automata , 1999, COCOON.

[10]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[11]  A. Bertoni The Solution of Problems Relative to Probabilistic Automata in the Frame of the Formal Languages Theory , 1974, GI Jahrestagung.

[12]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Shenggen Zheng,et al.  Potential of Quantum Finite Automata with Exact Acceptance , 2014, Int. J. Found. Comput. Sci..

[14]  Namio Honda,et al.  A Context-Free Language Which is not Acceptable by a Probabilistic Automaton , 1971, Inf. Control..

[15]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[16]  Maris Ozols,et al.  Improved constructions of mixed state quantum automata , 2009, Theor. Comput. Sci..

[17]  Alberto Bertoni,et al.  Small size quantum automata recognizing some regular languages , 2005, Theor. Comput. Sci..

[18]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[19]  A. C. Cem Say,et al.  Efficient probability amplification in two-way quantum finite automata , 2009, Theor. Comput. Sci..

[20]  Hartmut Klauck,et al.  On quantum and probabilistic communication: Las Vegas and one-way protocols , 2000, STOC '00.

[21]  V. Vinay,et al.  Quantum Finite Automata and Weighted Automata , 2005, ACiD.

[22]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[23]  Shenggen Zheng,et al.  One-Way Finite Automata with Quantum and Classical States , 2011, Languages Alive.

[24]  Richard J. Lipton,et al.  On the complexity of space bounded interactive proofs , 1989, 30th Annual Symposium on Foundations of Computer Science.

[25]  Marco Carpentieri,et al.  Regular Languages Accepted by Quantum Automata , 2001, Inf. Comput..

[26]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[27]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[28]  Rusins Freivalds,et al.  Probabilistic Two-Way Machines , 1981, MFCS.

[29]  A. C. Cem Say,et al.  Languages recognized by nondeterministic quantum finite automata , 2009, Quantum Inf. Comput..

[30]  Marek Karpinski,et al.  Lower Space Bounds for Randomized Computation , 1994, ICALP.

[31]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[32]  Phan Dinh Diu Criteria of representability of languages in probabilistic automata , 1977 .

[33]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[34]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[35]  Tomoyuki Yamakami One-Way Reversible and Quantum Finite Automata with Advice , 2012, LATA.

[36]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[37]  Markus Holzer,et al.  Automata That Take Advice , 1995, MFCS.

[38]  Anne Condon,et al.  Computational models of games , 1989, ACM distinguished dissertations.

[39]  A. C. Cem Say,et al.  Computation with Narrow CTCs , 2011, UC.

[40]  Shenggen Zheng,et al.  Generalizations of the distributed Deutsch–Jozsa promise problem , 2014, Mathematical Structures in Computer Science.

[41]  Tomoyuki Yamakami Constant-space quantum interactive proofs against multiple provers , 2014, Inf. Process. Lett..

[42]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[43]  Paavo Turakainen,et al.  Generalized automata and stochastic languages , 1969 .

[44]  Shenggen Zheng,et al.  On the state complexity of semi-quantum finite automata , 2014, RAIRO Theor. Informatics Appl..

[45]  Pascal Koiran,et al.  Quantum automata and algebraic groups , 2005, J. Symb. Comput..

[46]  YA. YA. KANEPS,et al.  Stochasticity of the languages acceptable by two-way finite probabilistic automata , 1991 .

[47]  Marcos Villagra,et al.  Quantum State Complexity of Formal Languages , 2015, DCFS.

[48]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[50]  R. Jozsa Quantum algorithms , 2001 .

[51]  Phan Dinh Diêu Criteria of representability of languages in probabilistic automata , 1977 .

[52]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[53]  Carlo Mereghetti,et al.  Complexity of Promise Problems on Classical and Quantum Automata , 2014, Computing with New Resources.

[54]  Abuzer Yakaryilmaz One-Counter Verifiers for Decidable Languages , 2013, CSR.

[55]  Tomoyuki Yamakami Complexity Bounds of Constant-Space Quantum Computation - (Extended Abstract) , 2015, DLT.

[56]  A. C. Cem Say,et al.  Probabilistic and quantum finite automata with postselection , 2011, ArXiv.

[57]  Alberto Bertoni,et al.  The Solution of Problems Relative to Probabilistic Automata in the Frame of the Formal Languages Theory , 1974, GI Jahrestagung.

[58]  Andris Ambainis,et al.  Superiority of exact quantum automata for promise problems , 2011, Inf. Process. Lett..

[59]  Abuzer Yakaryilmaz,et al.  Implications of Quantum Automata for Contextuality , 2014, CIAA.

[60]  Daowen Qiu,et al.  A note on quantum sequential machines , 2009, Theor. Comput. Sci..

[61]  Abuzer Yakarylmaz,et al.  Classical and quantum computation with small space bounds (PhD thesis) , 2011, ArXiv.

[62]  Vincent D. Blondel,et al.  Decidable and Undecidable Problems about Quantum Automata , 2005, SIAM J. Comput..

[63]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[64]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[65]  Paavo Turakainen Rational stochastic automata in formal language theory , 1982 .

[66]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[67]  Lihua Wu,et al.  Characterizations of one-way general quantum finite automata , 2009, Theor. Comput. Sci..

[68]  Andris Ambainis,et al.  On the Class of Languages Recognizable by 1-Way Quantum Finite Automata , 2001, STACS.

[69]  Alberto Bertoni,et al.  Some formal tools for analyzing quantum automata , 2006, Theor. Comput. Sci..

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  Cynthia Dwork,et al.  Finite state verifiers I: the power of interaction , 1992, JACM.

[72]  Timothy F. Havel,et al.  Benchmarking quantum control methods on a 12-qubit system. , 2006, Physical review letters.

[73]  Rusins Freivalds,et al.  Postselection Finite Quantum Automata , 2010, UC.

[74]  Ansis Rosmanis,et al.  Multi-letter Reversible and Quantum Finite Automata , 2007, Developments in Language Theory.

[75]  Massimo Pica Ciamarra Quantum Reversibility and a New Model of Quantum Automaton , 2001, FCT.

[76]  Tomoyuki Yamakami,et al.  One-way reversible and quantum finite automata with advice , 2012, Inf. Comput..

[77]  John Watrous,et al.  On the complexity of simulating space-bounded quantum computations , 2004, computational complexity.

[78]  A. C. Cem Say,et al.  Magic coins are useful for small-space quantum machines , 2014, Quantum Inf. Comput..

[79]  Rusins Freivalds,et al.  A new family of nonstochastic languages , 2010, Inf. Process. Lett..

[80]  Jiacun Wang,et al.  Handbook of Finite State Based Models and Applications , 2012 .

[81]  Umesh V. Vazirani,et al.  Quantum Algorithms , 2001, LATIN.

[82]  A. C. Cem Say,et al.  Quantum Finite Automata: A Modern Introduction , 2014, Computing with New Resources.

[83]  Rusins Freivalds Super-Exponential Size Advantage of Quantum Finite Automata with Mixed States , 2008, ISAAC.

[84]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[85]  Oleg E. Melnik,et al.  Encyclopedia of Complexity and Systems Science , 2008 .

[86]  Jean-Éric Pin On the Language Accepted by Finite Reversible Automata , 1987, ICALP.

[87]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[88]  Jean Bourgain,et al.  Estimates on exponential sums related to the Diffie–Hellman Distributions , 2005 .

[89]  Vincent D. Blondel,et al.  Undecidable Problems for Probabilistic Automata of Fixed Dimension , 2003, Theory of Computing Systems.

[90]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[91]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[92]  Cynthia Dwork,et al.  A Time Complexity Gap for Two-Way Probabilistic Finite-State Automata , 1990, SIAM J. Comput..

[93]  Beatrice Palano,et al.  Behaviours of Unary Quantum Automata , 2010, Fundam. Informaticae.

[94]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[95]  Mika Hirvensalo,et al.  Quantum Automata with Open Time Evolution , 2010, Int. J. Nat. Comput. Res..

[96]  Giancarlo Mauri,et al.  Some Recursive Unsolvable Problems Relating to Isolated Cutpoints in Probabilistic Automata , 1977, ICALP.

[97]  Scott Aaronson,et al.  Advice Coins for Classical and Quantum Computation , 2011, ICALP.

[98]  Carlo Mereghetti,et al.  On the Size of One-way Quantum Finite Automata with Periodic Behaviors , 2002, RAIRO Theor. Informatics Appl..

[99]  A. C. Cem Say,et al.  Computation with multiple CTCs of fixed length and width , 2012, Natural Computing.

[100]  Abuzer Yakaryilmaz,et al.  Public-qubits versus private-coins , 2012, Electron. Colloquium Comput. Complex..

[101]  Ugur Küçük,et al.  Finite Automata with Advice Tapes , 2014, Int. J. Found. Comput. Sci..

[102]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[103]  A. C. Cem Say,et al.  Debates with Small Transparent Quantum Verifiers , 2016, Int. J. Found. Comput. Sci..

[104]  Mika Hirvensalo,et al.  Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-Point Languages , 2007, SOFSEM.

[105]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..

[106]  Sheng Yu,et al.  Hierarchy and equivalence of multi-letter quantum finite automata , 2008, Theor. Comput. Sci..

[107]  Abuzer Yakaryilmaz,et al.  Superiority of one-way and realtime quantum machines , 2011, RAIRO Theor. Informatics Appl..

[108]  Richard J. Lipton,et al.  Cryptographic Primitives Based on Hard Learning Problems , 1993, CRYPTO.

[109]  Harumichi Nishimura,et al.  An application of quantum finite automata to interactive proof systems , 2009, J. Comput. Syst. Sci..

[110]  Paulo Mateus,et al.  On the complexity of minimizing probabilistic and quantum automata , 2012, Inf. Comput..

[111]  Abuzer Yakaryilmaz Classical and quantum computation with small space bounds (PhD thesis) , 2011, ArXiv.

[112]  Kathrin Paschen Quantum finite automata using ancilla qubits , 2000 .

[113]  Alberto Bertoni,et al.  Lower Bounds on the Size of Quantum Automata Accepting Unary Languages , 2003, ICTCS.

[114]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[115]  Shenggen Zheng,et al.  State succinctness of two-way finite automata with quantum and classical states , 2012, Theor. Comput. Sci..

[116]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[117]  Mark Mercer Lower Bounds for Generalized Quantum Finite Automata , 2008, LATA.