Linear-time triangulation of a simple polygon made easier via randomization

We describe a randomized algorithm for computing the trapezoidal decomposition of a simple polygon. Its expected running time is linear in the size of the polygon. By a well-known and simple linear time reduction, this implies a linear time algorithm for triangulating a simple polygon. Our algorithm is considerably simpler than Chazelle's (1991) celebrated optimal deterministic algorithm and, hence, positively answers his question of whether a simpler randomized algorithm for the problem exists. The new algorithm can be viewed as a combination of Chazelle's algorithm and of non-optimal randomized algorithms due to Clarkson et al. (1991) and to Seidel (1991), with the essential innovation that sampling is performed on subchains of the initial polygonal chain, rather than on its edges. It is also essential, as in Chazelle's algorithm, to include a bottom-up preprocessing phase previous to the top-down construction phase.

[1]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[2]  Franco P. Preparata,et al.  A New Approach to Planar Point Location , 1981, SIAM J. Comput..

[3]  Alain Fournier,et al.  Triangulating Simple Polygons and Equivalent Problems , 1984, TOGS.

[4]  Jirí Matousek,et al.  Constructing levels in arrangements and higher order Voronoi diagrams , 1994, SCG '94.

[5]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[6]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[7]  Kenneth L. Clarkson,et al.  Randomized parallel algorithms for trapezoidal diagrams , 1991, SCG '91.

[8]  David G. Kirkpatrick,et al.  Polygon triangulation in O(n log log n) time with simple data-structures , 1990, SCG '90.

[9]  Kenneth L. Clarkson,et al.  A fast las vegas algorithm for triangulating a simple polygon , 1989, Discret. Comput. Geom..

[10]  Jirí Matousek Derandomization in Computational Geometry , 2000, Handbook of Computational Geometry.

[11]  Bernard Chazelle,et al.  Triangulation and shape-complexity , 1984, TOGS.

[12]  Robert E. Tarjan,et al.  An O(n log log n)-Time Algorithm for Triangulating a Simple Polygon , 1988, SIAM J. Comput..

[13]  Mark de Berg,et al.  On lazy randomized incremental construction , 1994, STOC '94.

[14]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[15]  Raimund Seidel,et al.  A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons , 1991, Comput. Geom..

[16]  Jiřı́ Matoušek,et al.  Derandomization in Computational Geometry , 1996, J. Algorithms.

[17]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[18]  Chee-Keng Yap,et al.  A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.

[19]  Robert E. Tarjan,et al.  Erratum: An O(n log log n)-Time Algorithm for Triangulating a Simple Polygon , 1988, SIAM J. Comput..

[20]  Robert E. Tarjan,et al.  Planar Point Location Using Persistent Search Trees a , 1989 .

[21]  Kenneth L. Clarkson,et al.  Erratum: Randomized parallel algorithms for trapezoidal diagrams , 1992, International journal of computational geometry and applications.

[22]  Michael T. Goodrich,et al.  Methods for achieving fast query times in point location data structures , 1997, SODA '97.

[23]  Robert E. Tarjan,et al.  Triangulating a Simple Polygon , 1978, Inf. Process. Lett..

[24]  Ketan Mulmuley A Fast Planar Partition Algorithm, I , 1990, J. Symb. Comput..

[25]  Ron Y. Pinter,et al.  Polygon Triangulation: Efficiency and Minimality , 1986, J. Algorithms.

[26]  Chee Yap Symbolic treatment of geometric degeneracies: Proceedings of the International IFIPS Conference on System Modeling and Optimization. Tokyo, 1987 , 1987 .

[27]  Leonidas J. Guibas,et al.  A hierarchical method for real-time distance computation among moving convex bodies , 2000, Comput. Geom..

[28]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[29]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[30]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[31]  Kenneth L. Clarkson,et al.  A fast Las Vegas algorithm for triangulating a simple polygon , 1988, SCG '88.

[32]  John Hershberger,et al.  Optimal parallel algorithms for triangulated simple polygons , 1992, SCG '92.

[33]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[34]  Michael T. Goodrich,et al.  Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..

[35]  Raimund Seidel,et al.  On the exact worst case query complexity of planar point location , 2000, SODA '98.

[36]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..