"ON-OFF" switching of europium complex luminescence coupled with a ligand redox process.

A triarylamine-functionalized terpyridine ligand formed a highly coordinated complex with europium tris(β-diketonate), which displayed reversible ''ON-OFF'' luminescence switching coupled with a ligand redox process of triarylamine/triarylaminium cations.

[1]  J. Sauvage,et al.  Iridium terpyridine complexes as functional assembling units in arrays for the conversion of light energy. , 2008, Accounts of chemical research.

[2]  M. Neuburger,et al.  Vectorial property dependence in bis {4'-(n-pyridyl)-2,2':6',2"-terpyridine}iron(II) and ruthenium(II) complexes with n = 2, 3 and 4. , 2008, Dalton transactions.

[3]  Jason J. Davis,et al.  Reversible luminescence switching of a redox-active ferrocene-europium dyad. , 2011, Journal of the American Chemical Society.

[4]  E. Steckhan,et al.  Über organische Elektronenüberträgersysteme, I. Elektrochemische und spektroskopische Untersuchung bromsubstituierter Triarylamin-Redoxsysteme , 1980 .

[5]  R. Mahajan,et al.  Anion receptor functions of lanthanide tris(beta-diketonate) complexes: naked eye detection and ion-selective electrode determination of Cl- anion. , 2003, Chemical communications.

[6]  J. Canary,et al.  Transition metal-based chiroptical switches for nanoscale electronics and sensors , 2010 .

[7]  N. Chatterton,et al.  An efficient design for the rigid assembly of four bidentate chromophores in water-stable highly luminescent lanthanide complexes. , 2005, Angewandte Chemie.

[8]  Seth M Cohen,et al.  Stable lanthanide luminescence agents highly emissive in aqueous solution: multidentate 2-hydroxyisophthalamide complexes of Sm(3+), Eu(3+), Tb(3+), Dy(3+). , 2003, Journal of the American Chemical Society.

[9]  R. Adams,et al.  Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation , 1968 .

[10]  A. Deronzier,et al.  Photochromic and redox properties of bisterpyridine ruthenium complexes based on dimethyldihydropyrene units as bridging ligands. , 2011, Inorganic chemistry.

[11]  H. Wen,et al.  Syntheses, structures, and sensitized lanthanide luminescence by Pt --> Ln (Ln = Eu, Nd, Yb) energy transfer for heteronuclear PtLn2 and Pt2Ln4 complexes with a terpyridyl-functionalized alkynyl ligand. , 2007, Inorganic chemistry.

[12]  Andrew C Benniston,et al.  Pushing around electrons: towards 2-D and 3-D molecular switches. , 2004, Chemical Society reviews.

[13]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[14]  Terence E. Rice,et al.  Proton‐Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long‐Lived Emission , 1996 .

[15]  O. Maury,et al.  d-f heterobimetallic association between ytterbium and ruthenium carbon-rich complexes: redox commutation of near-IR luminescence. , 2011, Journal of the American Chemical Society.

[16]  Andreas Winter,et al.  Advances in the field of π-conjugated 2,2':6',2"-terpyridines. , 2011, Chemical Society reviews.

[17]  R. Pal,et al.  A single component ratiometric pH probe with long wavelength excitation of europium emission. , 2007, Chemical communications.

[18]  M. Pryce,et al.  Redox control of meso-zinc(II) ferrocenylporphyrin based fluorescence switches. , 2007, Inorganic chemistry.

[19]  V. Balzani,et al.  Photoinduced processes in dyads and triads containing a ruthenium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups , 1991 .

[20]  T. Hirao,et al.  Redox-switchable π-conjugated systems bearing terminal ruthenium(II) complexes , 2003 .

[21]  Susan J. Quinn,et al.  Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies , 2008 .

[22]  A. Sherry,et al.  Synthesis and luminescence studies of aryl substituted tetraamide complexes of europium(III): a new approach to pH responsive luminescent europium probes. , 2003, Inorganic chemistry.

[23]  A. Albrecht-Gary,et al.  Supramolecular edifices and switches based on metals , 2008 .

[24]  F. A. Neugebauer,et al.  Über Mono-, Di- und Triarylamin-Radikalkationen , 1975 .

[25]  E. Baranoff,et al.  A Triphenylamine/Bis(terpyridine)IrIII Dyad for the Assembly of Charge-Separation Constructs with Improved Performances , 2007 .

[26]  J. Morrow,et al.  Eu(III) complexes as anion-responsive luminescent sensors and paramagnetic chemical exchange saturation transfer agents. , 2011, Inorganic chemistry.

[27]  S. Ida,et al.  pH Dependence of the Photoluminescence of Eu3+-Intercalated Layered Titanium Oxide , 2009 .

[28]  H. Nishihara,et al.  Photochrome-coupled metal complexes: molecular processing of photon stimuli. , 2008, Dalton transactions.

[29]  V. Pecharsky,et al.  Handbook on the physics and chemistry of rare earths , 1979 .

[30]  T. Aida,et al.  Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. , 2005, Chemical reviews.

[31]  T. Gunnlaugsson,et al.  Lanthanide luminescent gold nanoparticles: pH-driven self-assembly formation between Eu(III)-cyclen conjugated AuNPs and sensitising β-diketonate antenna in water , 2009 .

[32]  A. Winter,et al.  Terpyridine‐Functionalized Surfaces: Redox‐Active, Switchable, and Electroactive Nanoarchitecturesgland , 2011, Advanced materials.

[33]  J. Vos,et al.  Photoinduced rearrangements in transition metal compounds , 2010 .

[34]  R. Pal,et al.  Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. , 2009, Accounts of chemical research.

[35]  M. Licchelli,et al.  Light-emitting molecular devices based on transition metals , 2006 .

[36]  D. Parker Critical Design Factors for Optical Imaging with Metal Coordination Complexes , 2011 .

[37]  Hiroshi Tsukube,et al.  Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. , 2002, Chemical reviews.

[38]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[39]  Ralph N. Adams,et al.  Anodic Oxidation Pathways of Aromatic Amines. Electrochemical and Electron Paramagnetic Resonance Studies , 1966 .

[40]  T. Gunnlaugsson,et al.  Lanthanide luminescent switches: modulation of the luminescence of bis-macrocyclic based Tb(III) conjugates in water by H+, Na+ and K+. , 2005, Dalton transactions.

[41]  J. Otsuki,et al.  Molecular switches for electron and energy transfer processes based on metal complexes , 2008 .

[42]  D. Das,et al.  Redox-induced ligand reorganization and helicity inversion in copper complexes of N,N-dialkylmethionine derivatives. , 2006, Inorganic chemistry.

[43]  R. Pal,et al.  A europium luminescence assay of lactate and citrate in biological fluids. , 2009, Organic & biomolecular chemistry.

[44]  Dai Oyama,et al.  Synthesis, structure, redox property and ligand replacement reaction of ruthenium(II) complexes containing a terpyridyl ligand with a redox active moiety , 2010 .

[45]  T. Hirao,et al.  Ruthenium complexes bearing π-conjugated pendantmoieties for a redox-switching system , 2001 .

[46]  Thorfinnur Gunnlaugsson,et al.  Luminescent Eu(III) and Tb(III) Complexes: Developing Lanthanide Luminescent-Based Devices , 2005, Journal of Fluorescence.

[47]  A. Credi,et al.  pH‐Sensitive Bis(2,2′:6′,2"‐terpyridine)ruthenium(II) Complexes – A DFT/TDDFT Investigation of Their Spectroscopic Properties , 2011 .

[48]  J. Yao,et al.  A novel redox-fluorescence switch based on a triad containing ferrocene and perylene diimide units. , 2008, Organic letters.

[49]  S. Shinoda,et al.  Dendrimer container for anion-responsive lanthanide complexation and "on-off" switchable near-infrared luminescence. , 2007, Chemical communications.

[50]  T. Gunnlaugsson,et al.  Luminescent self-assembly formation on a gold surface observed by reversible 'off-on' switching of Eu(III) emission. , 2009, Chemical communications.

[51]  N. Tamai,et al.  Photoluminescence switching of azobenzene-conjugated Pt(II) terpyridine complexes by trans-cis photoisomerization. , 2002, Inorganic chemistry.

[52]  B. Maiya,et al.  "Electro-Photo Switch" and "Molecular Light Switch" Devices Based on Ruthenium(II) Complexes of Modified Dipyridophenazine Ligands: Modulation of the Photochemical Function through Ligand Design. , 1999, Inorganic chemistry.

[53]  H. Abruña,et al.  Dithienylcyclopentenes-containing transition metal bisterpyridine complexes directed toward molecular electronic applications. , 2009, Inorganic chemistry.

[54]  S. Fukuzumi,et al.  Switchable antenna: a star-shaped ruthenium/osmium tetranuclear complex with azobis(bipyridine) bridging ligands. , 2008, Chemistry.

[55]  T. Gunnlaugsson,et al.  The recognition of anions using delayed lanthanide luminescence: the use of Tb(iii) based urea functionalised cyclen complexes. , 2009, Dalton transactions.

[56]  R. Pal,et al.  Evidence for the optical signalling of changes in bicarbonate concentration within the mitochondrial region of living cells. , 2011, Chemical communications.