Ultra-low power parametric frequency conversion in a silicon microring resonator.

We demonstrate parametric wavelength conversion via four-wave mixing using ultra-low peak pump powers of a few milliwatts in a micrometer-scale silicon device. The response time of our device is 100 ps allowing for implementation in high-bandwidth optical communications. At these ultra-low power levels and microscale sizes, it should be possible to realize hundreds of these devices operating simultaneously on a single chip.

[1]  M. Lipson,et al.  All-optical compact silicon comb switch. , 2007, Optics express.

[2]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[3]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[4]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[5]  E. R. Thoen,et al.  Ultra-compact Si-SiO2 microring resonator optical channel dropping filters , 1998, IEEE Photonics Technology Letters.

[6]  M. Lipson,et al.  Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. , 2007, Optics express.

[7]  Qianfan Xu,et al.  Cascaded silicon micro-ring modulators for WDM optical interconnection. , 2006, Optics express.

[8]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[9]  G. D. Boyd,et al.  Resonant optical second harmonic generation and mixing , 1966 .

[10]  K. Kikuchi,et al.  Design of highly efficient four-wave mixing devices using optical fibers , 1994, IEEE Photonics Technology Letters.

[11]  R A Wilson,et al.  Wavelength conversion in GaAs micro-ring resonators. , 2000, Optics letters.

[12]  M. Paniccia,et al.  Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. , 2006, Optics express.

[13]  Michal Lipson,et al.  All-optical switching on a silicon chip. , 2004, Optics letters.

[14]  M. Lipson,et al.  Signal regeneration using low-power four-wave mixing on silicon chip , 2008 .

[15]  O. Painter,et al.  Accurate measurement of scattering and absorption loss in microphotonic devices. , 2007, Optics letters.

[16]  T. Shoji,et al.  All-optical efficient wavelength conversion using silicon photonic wire waveguide , 2006, IEEE Photonics Technology Letters.

[17]  Michal Lipson,et al.  Ultrafast all-optical modulation on a silicon chip. , 2005, Optics letters.

[18]  Wavelength dependence of the ultrafast third-order nonlinearity of Silicon , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[19]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[20]  Ying-Hao Kuo,et al.  High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. , 2006, Optics express.

[21]  H. Driel,et al.  Two-photon absorption and Kerr coefficients of silicon for 850–2200nm , 2007 .

[22]  Y. Vlasov,et al.  C-band wavelength conversion in silicon photonic wire waveguides. , 2005, Optics express.

[23]  Benjamin G. Lee,et al.  Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator. , 2006, Optics letters.

[24]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[25]  Oded Cohen,et al.  Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator. , 2007, Optics letters.

[26]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[27]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[28]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[29]  Mario J. Paniccia,et al.  Dispersion compensation by optical phase conjugation in silicon waveguide , 2007 .

[30]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.