Cycles of given length in oriented graphs

We show that for each @?>=4 every sufficiently large oriented graph G with @d^+(G),@d^-(G)>=@?|G|/3@?+1 contains an @?-cycle. This is best possible for all those @?>=4 which are not divisible by 3. Surprisingly, for some other values of @?, an @?-cycle is forced by a much weaker minimum degree condition. We propose and discuss a conjecture regarding the precise minimum degree which forces an @?-cycle (with @?>=4 divisible by 3) in an oriented graph. We also give an application of our results to pancyclicity and consider @?-cycles in general digraphs.

[1]  Paul Erdös,et al.  On the connection between chromatic number, maximal clique and minimal degree of a graph , 1974, Discret. Math..

[2]  Noga Alon,et al.  Testing subgraphs in directed graphs , 2003, STOC '03.

[3]  Noga Alon,et al.  Properly colored Hamilton cycles in edge-colored complete graphs , 1997, Random Struct. Algorithms.

[4]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[5]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[6]  Carsten Thomassen,et al.  On pancyclic digraphs , 1976 .

[7]  Jian Shen,et al.  On the girth of digraphs , 2000, Discret. Math..

[8]  Zeng Min Song Pancyclic Oriented Zeng Min Song Graphs , 2006 .

[9]  Alexandr V. Kostochka,et al.  On Directed Triangles in Digraphs , 2007, Electron. J. Comb..

[10]  Tsuyoshi Nishimura,et al.  Short cycles in digraphs , 1988, Discret. Math..

[11]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[12]  Daniela Kühn,et al.  A Dirac-Type Result on Hamilton Cycles in Oriented Graphs , 2007, Combinatorics, Probability and Computing.

[13]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[14]  M. Meyniel Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe oriente , 1973 .

[15]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[16]  Daniela Kühn,et al.  Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree , 2006, J. Comb. Theory, Ser. B.

[17]  Luke Kelly,et al.  Arbitrary Orientations of Hamilton Cycles in Oriented Graphs , 2009, Electron. J. Comb..

[18]  Melvyn B. Nathanson The Caccetta-Haggkvist conjecture and additive number theory , 2006 .

[19]  Deryk Osthus,et al.  An exact minimum degree condition for Hamilton cycles in oriented graphs , 2008, 0801.0394.

[20]  G. Chartrand,et al.  On minimal regular digraphs with given girth , 1970 .

[21]  Daniela Kühn,et al.  Hamiltonian degree sequences in digraphs , 2008, J. Comb. Theory, Ser. B.

[22]  Luke Kelly On cycles in directed graphs , 2010 .

[23]  Jian Shen,et al.  On the Caccetta–Häggkvist Conjecture , 2002, Graphs Comb..

[24]  D. Kuhn,et al.  Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.

[25]  Carsten Thomassen,et al.  An ore-type condition implying a digraph to be pancyclic , 1977, Discret. Math..

[26]  E. Szemerbdi,et al.  Short Cycles in Directed Graphs , 2003 .