What stops a saccade?

Rapid movements to a target are ballistic; they usually do not last long enough for visual feedback about errors to influence them. Yet, the brain is not simply precomputing movement trajectory. Classical models of movement control involve a feedback loop that subtracts ‘where we are now’ from ‘where we want to be’. That difference is an internal motor error. The feedback loop reduces this error until it reaches zero, stopping the movement. However, neurophysiological studies have shown that movements controlled by the cerebrum (e.g. arm and head movements) and those controlled by the brain stem (e.g. tongue and eye movements) are also controlled, in parallel, by the cerebellum. Thus, there may not be a single error control loop. We propose an alternative to feedback error control, wherein the cerebellum uses adaptive, velocity feedback, integral control to stop the movement on target. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’.

[1]  David B. Wake,et al.  Salamander with a ballistic tongue , 1997, Nature.

[2]  D. Robinson,et al.  Eye movements evoked by cerebellar stimulation in the alert monkey. , 1973, Journal of neurophysiology.

[3]  H. Kornhuber,et al.  Natural and drug-induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback , 2004, Biological Cybernetics.

[4]  R. Wurtz,et al.  Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. , 1993, Journal of neurophysiology.

[5]  L. Optican,et al.  Slow saccades in spinocerebellar degeneration. , 1976, Archives of neurology.

[6]  G. Westby,et al.  Cerebellar output exerts spatially organized influence on neural responses in the rat superior colliculus , 2000, Neuroscience.

[7]  D. Guitton,et al.  Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat. , 1998, Journal of neurophysiology.

[8]  H. Noda,et al.  Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey , 1990, The Journal of comparative neurology.

[9]  L. Optican,et al.  Do brainstem omnipause neurons terminate saccades? , 2011, Annals of the New York Academy of Sciences.

[10]  A. Fuchs,et al.  Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. , 1993, Journal of neurophysiology.

[11]  H. Noda,et al.  Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation , 1980, The Journal of physiology.

[12]  A. Fuchs,et al.  Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. , 1993, Journal of neurophysiology.

[13]  Emmanuel Roze,et al.  Neuromimetic model of saccades for localizing deficits in an atypical eye-movement pathology , 2013, Journal of Translational Medicine.

[14]  D. Sparks,et al.  Cerebellotectal pathways in the macaque: Implications for collicular generation of saccades , 1990, Neuroscience.

[15]  L. Stark,et al.  Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. , 1976, Brain : a journal of neurology.

[16]  K. Ohtsuka,et al.  Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. , 1995, Journal of neurophysiology.

[17]  L. Stark,et al.  Most naturally occurring human saccades have magnitudes of 15 degrees or less. , 1975, Investigative ophthalmology.

[18]  R. Gellman,et al.  Motion processing for saccadic eye movements in humans , 2004, Experimental Brain Research.

[19]  N. Shimizu [Neurology of eye movements]. , 2000, Rinsho shinkeigaku = Clinical neurology.

[20]  D. Robinson,et al.  A hypothetical explanation of saccadic oscillations , 1979, Annals of neurology.

[21]  Ken-ichiro Miura,et al.  Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons , 2006, Journal of Computational Neuroscience.

[22]  Ole Kiehn,et al.  Locomotion: Circuits and Physiology , 2013 .

[23]  Ulrich Büttner,et al.  Saccades to stationary and moving targets differ in the monkey , 2004, Experimental Brain Research.

[24]  Boris Barbour,et al.  Temporal Organization of Activity in the Cerebellar Cortex: A Manifesto for Synchrony , 2002, Annals of the New York Academy of Sciences.

[25]  A. Fuchs,et al.  Activity of brain stem neurons during eye movements of alert monkeys. , 1972, Journal of neurophysiology.

[26]  K. Cullen,et al.  Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. , 1999, Journal of neurophysiology.

[27]  N. J. Gandhi,et al.  Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. , 1997, Journal of neurophysiology.

[28]  Gunnar Blohm,et al.  Hierarchical control of two-dimensional gaze saccades , 2014, Journal of Computational Neuroscience.

[29]  R. Wurtz,et al.  Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. , 1993, Journal of neurophysiology.

[30]  J. L. Conway,et al.  Effects of frontal eye field and superior colliculus ablations on eye movements. , 1979, Science.

[31]  A. Fuchs,et al.  Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. , 2002, Journal of neurophysiology.

[32]  N J Gandhi,et al.  Discharge of superior collicular neurons during saccades made to moving targets. , 1996, Journal of neurophysiology.

[33]  Visuomotor Cerebellum in Human and Nonhuman Primates , 2010, The Cerebellum.

[34]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. , 1972, Journal of neurophysiology.

[35]  Christian Quaia,et al.  Distributed model of control of saccades by superior colliculus and cerebellum , 1998, Neural Networks.

[36]  G. B. Stanton Organization of cerebellar and area “y” projections to the nucleus reticularis tegmenti pontis in macaque monkeys , 2001, The Journal of comparative neurology.

[37]  S. M. Highstein,et al.  Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons , 2022 .

[38]  D. Zee,et al.  Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. , 1998, Journal of neurophysiology.

[39]  H. Jörntell,et al.  In Vivo Analysis of Inhibitory Synaptic Inputs and Rebounds in Deep Cerebellar Nuclear Neurons , 2011, PloS one.

[40]  D. Munoz,et al.  Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. , 1998, Journal of neurophysiology.

[41]  Christian Quaia,et al.  Distributed Model of Collicular and Cerebellar Function during Saccades , 2002, Annals of the New York Academy of Sciences.

[42]  G. Gettinby,et al.  How hosts control worms , 1997, Nature.

[43]  L. Optican,et al.  Cerebellar-dependent adaptive control of primate saccadic system. , 1980, Journal of neurophysiology.

[44]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. , 1995, Journal of neurophysiology.

[45]  H. Diener,et al.  Pathophysiology of cerebellar ataxia , 1992, Movement disorders : official journal of the Movement Disorder Society.

[46]  E. Keller Participation of medial pontine reticular formation in eye movement generation in monkey. , 1974, Journal of neurophysiology.

[47]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. , 1995, Journal of neurophysiology.

[48]  L. Optican,et al.  Model of the control of saccades by superior colliculus and cerebellum. , 1999, Journal of neurophysiology.

[49]  D S Zee,et al.  Blink‐induced saccadic oscillations , 1986, Annals of neurology.

[50]  Jan Voogd,et al.  Oculomotor cerebellum. , 2006, Progress in brain research.

[51]  D. Sparks The brainstem control of saccadic eye movements , 2002, Nature Reviews Neuroscience.

[52]  A. Fuchs,et al.  The brainstem burst generator for saccadic eye movements , 2002, Experimental Brain Research.

[53]  B. Cohen,et al.  Projections from the superior colliculus motor map to omnipause neurons in monkey , 1999, The Journal of comparative neurology.

[54]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[55]  D. Linden,et al.  Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. , 1999, Journal of neurophysiology.

[56]  I. Donaldson Control of gaze by brain stem neurons Proceedings of the symposium held in the Abbaye de Royaumont. Paris 12–15 July, 1977.Developments in Neuroscience, vol. 1.R. Baker &A. Berthoz (eds). Elsevier/North Holland Biomedical Press, Amsterdam (1977). 514 + xv pp., $59.95 , 1978, Neuroscience.

[57]  Stefano Ramat,et al.  Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons , 2004 .

[58]  H. Noda,et al.  Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey , 1987, The Journal of comparative neurology.

[59]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[60]  David A. Robinson,et al.  Models of the saccadic eye movement control system , 1973, Kybernetik.

[61]  D. Robinson The mechanics of human saccadic eye movement , 1964, The Journal of physiology.

[62]  S. Heermann [Neuroanatomy of the Oculomotor System]. , 2017, Klinische Monatsblatter fur Augenheilkunde.

[63]  J. Voogd,et al.  The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem , 2004, Experimental Brain Research.

[64]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[65]  S. M. Highstein,et al.  Anatomy and physiology of intracellularly labelled omnipause neurons in the cat and squirrel monkey , 2004, Experimental Brain Research.

[66]  M B Carpenter,et al.  Fastigial efferent projections in the monkey: An autoradiographic study , 1977, The Journal of comparative neurology.