Handbook of incidence geometry : buildings and foundations
暂无分享,去创建一个
An introduction to incidence geometry, F. Buekenhout projective and affine geometry over division rings, F. Buekenhout and P. Cameron foundations of incidence geometry, F. Buekenhout projective planes, A. Beutelspacher translation planes, M. Kallaher dimensional linear spaces, A. Delandtsheer projective geometry over a finite field, J.A. Thas block designs, A.E. Brouwer and H.A. Wilbrink generalized polygons, J.A. Thas some classes of rank 2 geometries, F. De Clerck and H. Van Maldeghem buildings, R. Scharlau point-line spaces related to buildings, A.M. Cohen free constructions, M. Funk and K. Strambach chain geometries, A. Herzer discrete non-euclidean geometry, J.J. Seidel distance preserving transformations, J.A. Lester metric geometry, E.M. Schroder pointless geometries, G. Gerla geometry over rings, F.D. Veldkamp applications of buildings, J. Rohlfs and T.A. Springer projective geometry on modular lattices, U. Brehm et al finite diagram geometries extending buildings, F. Buekenhout and A. Pasini linear topological geometries, T. Grundhofer and R. Lowen topological circle geometries, G.F. Steinke.