Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations

We provide an overview of the solution techniques we have developed for the fully discretized equations encountered at every time step in computation of fluid–structure interactions with the space–time techniques. These coupled, nonlinear equations are generated from the finite element discretization of the governing equations for the fluid mechanics, structural mechanics and the motion of the fluid mechanics mesh. The fluid mechanics equations are discretized with the deforming-spatial-domain/stabilized space–time formulation. The mesh motion is governed by the equations of elasticity, with the smaller elements stiffened in the finite element formulation. The coupled, fully discretized equations are solved with the block-iterative, quasi-direct and direct coupling methods. We present numerical examples with incompressible flows and membrane and cable structures. � 2005 Elsevier B.V. All rights reserved.

[1]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[2]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[3]  Thomas J. R. Hughes,et al.  Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations , 1983 .

[4]  Tayfun E. Tezduyar,et al.  Aerodynamic Interactions Between Parachute Canopies , 2003 .

[5]  Tayfun E. Tezduyar,et al.  METHODS FOR COMPUTATION OF MOVING BOUNDARIES AND INTERFACES , 2004 .

[6]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[7]  Tayfun E. Tezduyar,et al.  A robust preconditioner for fluid–structure interaction problems , 2005 .

[8]  J. E. Adkins,et al.  Large Elastic Deformations , 1971 .

[9]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[10]  Tayfun E. Tezduyar Stabilized Finite Element Formulations and Interface-Tracking and Interface-Capturing Techniques for Incompressible Flows , 2003 .

[11]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[12]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[13]  E. TezduyarT.,et al.  A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. II , 1992 .

[14]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[15]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[16]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[17]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[18]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[19]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[20]  Ahmed Sameh,et al.  Hybrid Parallel Linear System Solvers , 1999 .

[21]  Sunil Vijay Sathe Enhanced-discretization and solution techniques in flow simulations and parachute fluid-structure interactions , 2004 .

[22]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[23]  Tayfun E. Tezduyar Finite Element Interface-Tracking and Interface-Capturing Techniques for Flows With Moving Boundaries and Interfaces , 2001, Heat Transfer: Volume 3 — Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows.

[24]  M M Hafez Numerical Simulations of Incompressible Flows , 2003 .

[25]  Ahmed H. Sameh,et al.  Parallel algorithms for indefinite linear systems , 2002, Parallel Comput..

[26]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[27]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[28]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[29]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[30]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[31]  J. W. Leonard,et al.  Structural Modeling of Parachute Dynamics , 2000 .

[32]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[33]  M. Sprague,et al.  Advances in Computational Methods for Fluid-Structure-Interaction Problems , 1999 .

[34]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[35]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[36]  Gregory M. Hulbert,et al.  New Methods in Transient Analysis , 1992 .

[37]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[38]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[39]  Michael L. Accorsi,et al.  Fluid-Structure Interactions of a Round Parachute: Modeling and Simulation Techniques , 2001 .

[40]  van Eh Harald Brummelen,et al.  The relevance of conservation for stability and accuracy of numerical methods for fluid?structure interaction , 2003 .

[41]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[42]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[43]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .