On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution

We analyze size and space complexity of Res(k), a family of proof systems introduced by Kraj��ek in [16] which extend Resolution by allowing disjunctions of conjunctions of up to k � 1 literals. We prove the following results: (1) The treelike Res(k) proof systems form a strict hierarchy with respect to proof size and also with respect to space. (2) Resolution polynomially simulates treelike Res(k), and is almost exponentially separated from treelike Res(k). (3) The space lower bounds known for Resolution also carry over to Res(k). We obtain almost optimal space lower bounds for PHPn, GTn, Random Formulas, CTn, and Tseitin Tautologies.

[1]  Jan Krajícek,et al.  Lower bounds to the size of constant-depth propositional proofs , 1994, Journal of Symbolic Logic.

[2]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[3]  Russell Impagliazzo,et al.  A lower bound for DLL algorithms for k-SAT (preliminary version) , 2000, SODA '00.

[4]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[5]  Michael Alekhnovich,et al.  Space Complexity in Propositional Calculus , 2002, SIAM J. Comput..

[6]  Maria Luisa Bonet,et al.  On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..

[7]  Jacobo Torán,et al.  Space Bounds for Resolution , 1999, STACS.

[8]  Nathan Linial,et al.  Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas , 1986, J. Comb. Theory, Ser. A.

[9]  Michael Alekhnovich,et al.  Resolution is not automatizable unless W[P] is tractable , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[10]  Albert Atserias,et al.  A combinatorial characterization of resolution width , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[11]  Toniann Pitassi,et al.  A new proof of the weak pigeonhole principle , 2000, Symposium on the Theory of Computing.

[12]  J. Kraj On the Weak Pigeonhole Principle , 2001 .

[13]  Eli Ben-Sasson,et al.  Size space tradeoffs for resolution , 2002, STOC '02.

[14]  Toniann Pitassi,et al.  A new proof of the weak pigeonhole principle , 2000, STOC '00.

[15]  N. S. Narayanaswamy,et al.  An Optimal Lower Bound for Resolution with 2-Conjunctions , 2002, MFCS.

[16]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[17]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[18]  Alexander A. Razborov,et al.  Resolution lower bounds for perfect matching principles , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Robert E. Tarjan,et al.  Space bounds for a game on graphs , 1976, STOC '76.

[21]  Neil Thapen,et al.  The Complexity of Treelike Systems over -Local Formulae , 2004 .

[22]  Jan Krajícek,et al.  Some Consequences of Cryptographical Conjectures for S12 and EF , 1998, Inf. Comput..

[23]  Jochen Messner,et al.  On the complexity of resolution with bounded conjunctions , 2004, Theor. Comput. Sci..

[24]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[25]  Jan Kra,et al.  Lower Bounds to the Size of Constant-depth Propositional Proofs , 1994 .

[26]  A. Slisenko Studies in Constructive Mathematics and Mathematical Logic Part 2 , 1970 .

[27]  Alexander A. Razborov Resolution lower bounds for perfect matching principles , 2004, J. Comput. Syst. Sci..

[28]  Jacobo Torán,et al.  A combinatorial characterization of treelike resolution space , 2003, Inf. Process. Lett..

[29]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[30]  Samuel R. Buss,et al.  A Switching Lemma for Small Restrictions and Lower Bounds for k-DNF Resolution , 2004, SIAM J. Comput..

[31]  Maria Luisa Bonet,et al.  Lower Bounds for the Weak Pigeonhole Principle and Random Formulas beyond Resolution , 2002, Inf. Comput..

[32]  Jacobo Torán,et al.  Minimally Unsatisfiable CNF Formulas , 2001, Bull. EATCS.

[33]  Eli Ben-Sasson,et al.  Space complexity of random formulae in resolution , 2003, Random Struct. Algorithms.

[34]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[35]  Hans Kleine Büning,et al.  Aussagenlogik - Deduktion und Algorithmen , 1994, Leitfäden und Monographien der Informatik.

[36]  Michael E. Saks,et al.  On the complexity of unsatisfiability proofs for random k-CNF formulas , 1998, STOC '98.

[37]  Oliver Kullmann,et al.  An application of matroid theory to the SAT problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[38]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[39]  Maria Luisa Bonet,et al.  Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution , 2001, ICALP.

[40]  Maria Luisa Bonet,et al.  On the automatizability of resolution and related propositional proof systems , 2002, Inf. Comput..

[41]  J. Krajícek On the weak pigeonhole principle , 2001 .

[42]  Ran Raz,et al.  On Interpolation and Automatization for Frege Systems , 2000, SIAM J. Comput..