Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom

The Fukui function for a neutral atom is expressed as its LDA approximation plus a one‐parameter gradient correction, and the resultant formula is numerically tested. Expressing hardness as a density functional involving this Fukui function, global hardness values are determined for several atoms. Estimates also are made of the covalent radii of neutral atoms. Calculated Fukui functions exhibit characteristics similar to those reported in the literature. Calculated hardnesses compare favorably with experimental values, and predicted covalent radii are in agreement with existing theoretical values and experimental data. No information other than the electron densities of the neutral species enter in the calculations. An exact nuclear cusp condition on the Fukui function is derived.

[1]  P. Chattaraj,et al.  Density functional calculation of a characteristic atomic radius , 1995 .

[2]  Luis Fernández Pacios,et al.  Atomic radii scales and electron properties deduced from the charge density , 1995, J. Comput. Chem..

[3]  Swapan K. Ghosh,et al.  Simple Density Functional Approach to Polarizability, Hardness, and Covalent Radius of Atomic Systems , 1994 .

[4]  P. Chattaraj,et al.  Hardness and bond index profiles of hydrogen-bonded complexes with single-minimum and double-minimum potentials , 1994 .

[5]  A. Cedillo A new representation for ground states and its legendre transforms , 1994 .

[6]  P. Chattaraj,et al.  Hardness dynamics in a chemical reaction , 1994 .

[7]  A. Vela,et al.  Local softness and chemical reactivity of maleimide: nucleophilic addition , 1992 .

[8]  N. Sukumar,et al.  A universal density criterion for correlating the radii and other properties of atoms and ions , 1992 .

[9]  P. Geerlings,et al.  Quantum-chemical study of the Fukui function as a reactivity index , 1991 .

[10]  R. Parr,et al.  Hardnesses from electrostatic potentials , 1991 .

[11]  M. O'keefe,et al.  Atom sizes and bond lengths in molecules and crystals , 1991 .

[12]  R. Parr,et al.  Aspects of the Softness and Hardness Concepts of Density‐Functional Theory , 1991 .

[13]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[14]  Gázquez,et al.  Binding energies of atoms and ions: The Z-1 perturbation expansion and the Thomas-Fermi limit. , 1988, Physical review. A, General physics.

[15]  K. Sen,et al.  Absolute hardness parameter: Finite difference versus density functional theoretic definition , 1988 .

[16]  L. Balbás,et al.  Density functional theory of the chemical potential of atoms and its relation to electrostatic potentials and bonding distances , 1986 .

[17]  R. Parr,et al.  Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Berkowitz,et al.  A classical fluid‐like approach to the density‐functional formalism of many‐electron systems , 1985 .

[19]  R. Nalewajski,et al.  Atoms-in-a-molecule model of the chemical bond , 1984 .

[20]  Renato Pucci,et al.  Electron density, Kohn−Sham frontier orbitals, and Fukui functions , 1984 .

[21]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[22]  Ralph G. Pearson,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[23]  P. Politzer,et al.  Relationships between atomic chemical potentials, electrostatic potentials, and covalent radii , 1983 .

[24]  K. Fukui,et al.  Role of frontier orbitals in chemical reactions. , 1982, Science.

[25]  S. M. Rothstein,et al.  Rare gas interactions using an improved statistical method , 1978 .

[26]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[27]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .