Symplectic reduction along a submanifold

We introduce the process of symplectic reduction along a submanifold as a uniform approach to taking quotients in symplectic geometry. This construction holds in the categories of smooth manifolds, complex analytic spaces, and complex algebraic varieties, and has an interpretation in terms of derived stacks in shifted symplectic geometry. It also encompasses Marsden– Weinstein–Meyer reduction, Mikami–Weinstein reduction, the pre-images of Poisson transversals under moment maps, symplectic cutting, symplectic implosion, and the Ginzburg–Kazhdan construction of Moore–Tachikawa varieties in TQFT. A key feature of our construction is a concrete and systematic association of a Hamiltonian G-space MG,S to each pair (G,S), where G is any Lie group and S ⊆ Lie(G)∗ is any submanifold satisfying certain non-degeneracy conditions. The spaces MG,S satisfy a universal property for symplectic reduction which generalizes that of the universal imploded cross-section. While these Hamiltonian G-spaces are explicit and natural from a Lie-theoretic perspective, some of them appear to be new.

[1]  A. L. Onishchik,et al.  Structure of Lie groups and Lie algebras , 1994 .

[2]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[3]  Non-abelian convexity by symplectic cuts , 1996, dg-ga/9603015.

[4]  A. Weinstein,et al.  Moments and Reduction for Symplectic Groupoids , 1988 .

[5]  A. Weinstein The symplectic “category” , 1982 .

[6]  E. B. Dynkin,et al.  Semisimple subalgebras of semisimple Lie algebras , 1957 .

[7]  J. Weitsman Non-Abelian Symplectic Cuts and the Geometric Quantization of Noncompact Manifolds , 2001 .

[8]  P. Safronov Quasi-Hamiltonian reduction via classical Chern–Simons theory , 2013, 1311.6429.

[9]  I. Moerdijk,et al.  On integrability of infinitesimal actions , 2000, math/0006042.

[10]  THE SHEETS OF A CLASSICAL LIE ALGEBRA , 2005 .

[11]  Kenneth R. Meyer,et al.  Symmetries and Integrals in Mechanics , 1973 .

[12]  F. Kirwan Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .

[13]  Coisotropic embeddings in Poisson manifolds , 2006, math/0611480.

[14]  M. Thaddeus,et al.  On non-Abelian symplectic cutting , 2012, 1202.3077.

[15]  A. Broer Decomposition Varieties in Semisimple Lie Algebras , 1998, Canadian Journal of Mathematics.

[16]  S. Rayan,et al.  Hyperpolygons and Hitchin systems , 2014, 1410.6467.

[17]  D. Calaque Lagrangian structures on mapping stacks and semi-classical TFTs , 2013, 1306.3235.

[18]  On the dimension of the sheets of a reductive Lie algebra , 2007, 0711.2735.

[19]  A. Cattaneo On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds , 2003, math/0308180.

[20]  Hamiltonian reduction and Maurer-Cartan equations , 2003, math/0304276.

[21]  B. Kostant,et al.  Lie Group Representations on Polynomial Rings , 1963 .

[22]  P. Safronov Poisson-Lie structures as shifted Poisson structures , 2017, Advances in Mathematics.

[23]  Peter Crooks,et al.  Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices , 2017, Mathematical Research Letters.

[24]  N. Hitchin Stable bundles and integrable systems , 1987 .

[25]  S. Sternberg,et al.  Semi-Classical Analysis , 2013 .

[26]  V. Popov Irregular and Singular Loci of Commuting Varieties , 2008, 0801.3074.

[27]  H. Nakajima Quiver varieties and Kac-Moody algebras , 1998 .

[28]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  M. Roček,et al.  Hyperkähler metrics and supersymmetry , 1987 .

[30]  Gerald W. Schwarz,et al.  Symplectic quotients have symplectic singularities , 2017, Compositio Mathematica.

[31]  F. Kirwan,et al.  Implosion for hyperkähler manifolds , 2012, Compositio Mathematica.

[32]  Victor Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000 .

[33]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[34]  R. Bezrukavnikov,et al.  Equivariant homology and K-theory of affine Grassmannians and Toda lattices , 2005, Compositio Mathematica.

[35]  A. Broer Lectures on decomposition classes , 1998 .

[36]  Peter Crooks,et al.  An Application of Spherical Geometry to Hyperkähler Slices , 2019, Canadian Journal of Mathematics.

[37]  G. Moore,et al.  On 2d TQFTs whose values are holomorphic symplectic varieties , 2011, 1106.5698.

[38]  Roger Bielawski On the Moore-Tachikawa varieties , 2021 .

[39]  P. Safronov SYMPLECTIC IMPLOSION AND THE GROTHENDIECK-SPRINGER RESOLUTION , 2014, 1411.2962.

[40]  Patrice Tauvel,et al.  Lie algebras and algebraic groups , 2005 .

[41]  K. Mackenzie,et al.  General theory of lie groupoids and lie algebroids , 2005 .

[42]  Deformations of the Lie–Poisson sphere of a compact semisimple Lie algebra , 2012, Compositio Mathematica.

[43]  Algebraic Hamiltonian actions , 2006, math/0601023.

[44]  M. Finkelberg,et al.  Ring objects in the equivariant derived Satake category arising from Coulomb branches , 2017, Advances in Theoretical and Mathematical Physics.

[45]  Ana Bălibanu The partial compactification of the universal centralizer , 2017, 1710.06327.

[46]  A. Weinstein Symplectic groupoids and Poisson manifolds , 1987 .

[47]  Pre-Poisson submanifolds , 2007, 0710.5772.

[48]  Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points , 2015, 1509.07764.

[49]  Eckhard Meinrenken,et al.  SINGULAR REDUCTION AND QUANTIZATION , 1997, dg-ga/9707023.

[50]  T. Arakawa CHIRAL ALGEBRAS OF CLASS S AND MOORE-TACHIKAWA SYMPLECTIC VARIETIES , 2018 .

[51]  N. Spaltenstein Nilpotent classes and sheets of Lie algebras in bad characteristic , 1982 .

[52]  Shlomo Sternberg,et al.  Hamiltonian group actions and dynamical systems of calogero type , 1978 .

[53]  M. Crainic,et al.  Dirac structures, momentum maps, and quasi-Poisson manifolds , 2003, math/0310445.

[54]  Peter Crooks,et al.  The $\log$ symplectic geometry of Poisson slices , 2020, Journal of Symplectic Geometry.

[55]  Tudor Ratiu,et al.  Reduction of Poisson manifolds , 1986 .

[56]  Shlomo Sternberg,et al.  Geometric quantization and multiplicities of group representations , 1982 .

[57]  Hyperkähler Implosion and Nahm’s Equations , 2014, 1411.0545.

[58]  Damien Calaque,et al.  Derived Stacks in Symplectic Geometry , 2018, 1802.09643.

[59]  W. Borho,et al.  Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen , 1979 .

[60]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[61]  R. Bielawski Hyperkähler Structures and Group Actions , 1997 .

[62]  P. Safronov,et al.  Shifted Symplectic Lie Algebroids , 2016, International Mathematics Research Notices.

[63]  Homogeneous quantization and multiplicities of group representations , 1982 .

[64]  E. Lerman,et al.  Stratified symplectic spaces and reduction , 1991 .

[65]  Reyer Sjamaar Holomorphic slices, symplectic reduction and multiplicities of representations , 1993 .

[66]  F. Forstnerič The homotopy principle in complex analysis: a survey , 2003, math/0301067.

[67]  The normal form theorem around Poisson transversals , 2013, 1306.6055.

[68]  M. Stiénon,et al.  Integration of holomorphic Lie algebroids , 2008, 0803.2031.