Text- and Content-based Approaches to Image Retrieval for the ImageCLEF 2009 Medical Retrieval Track

This article describes the participation of the Image and Text Integration (ITI) group from the United States National Library of Medicine (NLM) in the ImageCLEF 2009 medical retrieval track. Our methods encompass a variety of techniques relating to document summarization and text- and content-based image retrieval. Our text-based approach utilizes the Unied Medical Language System (UMLS) synonymy of concepts identied in information requests and image-related text to retrieve semantically relevant images. Our content-based approaches utilize similarity metrics based on computed \visual concepts" to identify visually similar images. In this article we present an overview of these approaches, discuss our experiences combining them into multimodal retrieval strategies, and describe our submitted runs and results.

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  Henning Müller,et al.  Overview of the CLEF 2009 Medical Image Retrieval Track , 2009, CLEF.

[3]  George R. Thoma,et al.  A medical image retrieval framework in correlation enhanced visual concept feature space , 2009, 2009 22nd IEEE International Symposium on Computer-Based Medical Systems.

[4]  Mathias Lux,et al.  Lire: lucene image retrieval: an extensible java CBIR library , 2008, ACM Multimedia.

[5]  Henning Müller,et al.  Overview of the ImageCLEFmed 2008 Medical Image Retrieval Task , 2008, CLEF.

[6]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[7]  Jimmy J. Lin,et al.  Answering Clinical Questions with Knowledge-Based and Statistical Techniques , 2007, CL.

[8]  Eugene Kim,et al.  Overview of the ImageCLEFmed 2006 Medical Retrieval and Medical Annotation Tasks , 2006, CLEF.

[9]  A. Geissbühler,et al.  A review of content-based image retrieval systems in medical applications - clinical benefits and future directions , 2004, Int. J. Medical Informatics.

[10]  Shih-Fu Chang,et al.  Overview of the MPEG-7 standard , 2001, IEEE Trans. Circuits Syst. Video Technol..

[11]  Nicholas C. Ide,et al.  Application of Technology: Design and Implementation of a National Clinical Trials Registry , 2000, J. Am. Medical Informatics Assoc..

[12]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[13]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[14]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[15]  George R. Thoma,et al.  Combining Medical Domain Ontological Knowledge and Low-level Image Features for Multimedia Indexing , 2008 .

[16]  Nicholas C. Ide,et al.  Application of Information Technology: Essie: A Concept-based Search Engine for Structured Biomedical Text , 2007, J. Am. Medical Informatics Assoc..

[17]  Eugene Kim,et al.  Overview of the ImageCLEFmed 2006 Medical Retrieval and Annotation Tasks , 2006, CLEF.

[18]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[19]  Alan R. Aronson,et al.  Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program , 2001, AMIA.

[20]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[21]  Ninth International Workshop on Image Analysis for Multimedia Interactive Services FCTH: FUZZY COLOR AND TEXTURE HISTOGRAM A LOW LEVEL FEATURE FOR ACCURATE IMAGE RETRIEVAL , 2022 .