Polarimetry in the human eye using an imaging linear polariscope

We have studied the polarization parameters of the human eye associated with ocular birefringence from double-pass retinal images by using an imaging linear polariscope. A series of nine images corresponding to combinations of linear independent polarization states in both generator and analyser units was recorded. Retardation and azimuthal angle obtained when considering the human eye as a linear retarder have been compared to those calculated with a Mueller matrix polarimeter. Results in young eyes show only small differences, of about 2° for azimuth and 6° for retardation, between these methods. Moreover, changes in the polarization state of the central part of double-pass images are very different from those corresponding to the tails. Although the simpler linear polariscope is mainly designed for studies in physiological optics and clinical diagnosis, it can also be used for the analysis of in vitro biological samples and crystals.

[1]  F. Vargas-Martin,et al.  Measurements of the corneal birefringence with a liquid-crystal imaging polariscope. , 2002, Applied optics.

[2]  S A Burns,et al.  Direct measurement of human-cone-photoreceptor alignment. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  J S Tyo,et al.  Target detection in optically scattering media by polarization-difference imaging. , 1996, Applied optics.

[4]  G. V. van Blokland,et al.  Ellipsometry of the human retina in vivo: preservation of polarization. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[5]  K. Able Skylight polarization patterns at dusk influence migratory orientation in birds , 1982, Nature.

[6]  J. Bueno,et al.  Spatially resolved polarization properties for in vitro corneas , 2001, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[7]  Richard A. Bone,et al.  The role of the macular pigment in the detection of polarized light , 1980, Vision Research.

[8]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .

[9]  R Wehner,et al.  Polarized-light navigation by insects. , 1976, Scientific American.

[10]  D. Hunter,et al.  Mathematical modeling of retinal birefringence scanning. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  R. Oldenbourg,et al.  New polarized light microscope with precision universal compensator , 1995, Journal of microscopy.

[12]  P Artal,et al.  Polarization and retinal image quality estimates in the human eye. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  P Artal,et al.  Determination of the point-spread function of human eyes using a hybrid optical-digital method. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[14]  Bernard Le Jeune,et al.  Mueller matrix formalism in imagery: an experimental arrangement for noise reduction , 1994, Optics & Photonics.

[15]  Charman Wn,et al.  Reflection of plane-polarized light by the retina. , 1980 .

[16]  Edward Collett,et al.  Polarized Light , 1992, Encyclopedic Dictionary of Archaeology.

[17]  David G. Cogan,et al.  SOME OCULAR PHENOMENA PRODUCED WITH POLARIZED LIGHT , 1941 .

[18]  R. Farrell,et al.  Numerical modeling of the cornea's lamellar structure and birefringence properties. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[20]  R. Weinreb,et al.  Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. , 1992, Applied optics.

[21]  Generalized algorithm for photoelastic measurements based on phase-stepping imaging polarimetry. , 1999, Applied optics.

[22]  H. Ishikawa,et al.  Effect of pupillary dilation on retinal nerve fiber layer thickness as measured by scanning laser polarimetry in eyes with and without cataract. , 1999, Journal of glaucoma.

[23]  G. Tomita,et al.  Evaluation of the Effect of Aging on the Retinal Nerve Fiber Layer Thickness Using Scanning Laser Polarimetry , 1995, Journal of glaucoma.

[24]  Russell A. Chipman,et al.  Linear polarization sensitivity specifications for spaceborne instruments , 1992, Optics & Photonics.

[25]  Jack Cariou,et al.  Laser imaging procedure for evaluating the polarization signature of immersed targets , 1993 .

[26]  Mauricio E Pons,et al.  Scanning laser polarimetry measurements after laser-assisted in situ keratomileusis. , 2000, American journal of ophthalmology.

[27]  A Sommer,et al.  Cross-polarization photography of the nerve fiber layer. , 1984, Archives of ophthalmology.

[28]  G. Jellison,et al.  Two-modulator generalized ellipsometry: experiment and calibration. , 1997, Applied optics.

[29]  Stefan Goelz,et al.  In-vivo measurement of the retinal birefringence with regard to corneal effects using an electro-optical ellipsometer , 1996, European Conference on Biomedical Optics.

[30]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[31]  Pericles S. Theocaris,et al.  Matrix Theory of Photoelasticity , 1979 .

[32]  L. Zangwill,et al.  Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes. , 1995, American journal of ophthalmology.

[33]  R A Weale,et al.  Polarized light and the human fundus oculi , 1966, The Journal of physiology.

[34]  B. Hochheimer,et al.  Retinal polarization effects. , 1982, Applied optics.

[35]  C. Hawryshyn,et al.  Cone photoreceptor mechanisms and the detection of polarized light in fish , 1987, Journal of Comparative Physiology A.

[36]  G. Blokland,et al.  Ellipsometry of the human retina in vivo: preservation of polarization. , 1985 .

[37]  van Zyl,et al.  On the Importance of Polarization in Radar Scattering Problems , 1986 .

[38]  D. Hunter,et al.  Automated detection of foveal fixation by use of retinal birefringence scanning. , 1999, Applied optics.

[39]  R. Knighton,et al.  Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry. , 2000, American journal of ophthalmology.

[40]  P Artal,et al.  Double-pass imaging polarimetry in the human eye. , 1999, Optics letters.

[41]  Robert Walraven,et al.  Polarization Imagery , 1977, Optics & Photonics.

[42]  Juan M. Bueno,et al.  Polarimetry using liquid-crystal variable retarders : theory and calibration , 2000 .

[43]  R. Azzam,et al.  Polarized light in optics and spectroscopy , 1990 .

[44]  J. Bueno,et al.  Depolarization effects in the human eye , 2001, Vision Research.

[45]  J. Bueno,et al.  Polarization properties of the in vitro old human crystalline lens. , 2003, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[46]  J. A. Conway,et al.  Polarimetric synthetic-aperture radar : fundamental concepts and analysis tools , 1991 .

[47]  Eusebio Bernabeu,et al.  Depolarization and polarization indices of an optical system , 1986 .

[48]  D. Evans,et al.  Radar polarimetry: analysis tools and applications , 1988 .

[49]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[50]  A. Stanworth,et al.  Retinal pigment and the Haidinger effect , 1954, The Journal of physiology.

[51]  J. Bueno,et al.  Measurement of parameters of polarization in the living human eye using imaging polarimetry , 2000, Vision Research.

[52]  R. Weale,et al.  Polarising light biomicroscopy and the relation between visual acuity and cataract , 1995, Eye.