Petrology and geochemistry of exhumed peridotites and gabbros at non-volcanic margins: ODP Leg 173 West Iberia ocena-continent transition zone

Abstract Ultramafic and mafic rocks recovered at Holes 1068A and 1070A were drilled during Leg 173 of the Ocean Drilling Program (ODP) in the ocean-continent transition zone of the Iberia Abyssal Plain. Peridotites show contrasting petrographic characteristics. Hole 1068A peridotites are fine grained and show a well-defined high-temperature foliation marked by elongated pyroxene as well as aligned spinels. Hole 1068A peridotites are strongly serpentinized. Hole 1070A peridotites are coarse grained and show little evidence of high-temperature foliation. The degree of serpentinization is lower and relicts of silicate minerals are preserved. In both sets of recovered material, spinels show a wide range of composition and suggest a complex magmatic evolution. Gabbros dykes, which are found only in Hole 1070A, are very coarse grained and are locally sheared and/or crushed. Magmatic amphiboles are kaersutites and Ti-rich tschermakites that are partially replaced by hornblende and actinolite, and are associated with plagioclase of intermediate composition. Peridotites and pyroxenite have low TiO2, Al2O3 and CaO contents in carbonate-free samples. Ni and Cr contents fall into the upper-mantle array. On the other hand, gabbros have relatively high TiO2 and V contents reflecting modal ilmenite, and suggesting that they are relatively differentiated. This paper presents the very first geochemical data on platinum group elements (PGE) of peridotites and gabbros from passive margins. Peridotites and gabbros show low PGE (25.83 ppb and 1.44 ppb), Pd (2.75 ppb and 0.15 ppb), Pd/Ir ratios (1.45 and 1.3) and mafic index. Pyroxenite has the highest PGE (27.97 ppb), Pd/Ir (19.87) and Pt/Ir (10.25). Interelemental correlation and observation of PGE-bearing sulphide phases suggest that the PGE are hosted by single sulphide phases. From a PGE point of view, extraction of magmas involved very PGE-depleted liquids similar to gabbroic veins cutting the peridotites at Hole 1070A. Partial melting is interpreted as occurring just before oceanic accretion. Geochemical attributes suggest that the peridotites belong to the Ronda and Beni Bousera peridotitic depleted end-member clan. Thus they are believed to be of subcontinental origin. Deformation and retrograde metamorphism of peridotites and gabbros are consistent with exhumation in a rift environment post-dating the 120 Ma magmatic stage.

[1]  O. E. S. Party Drilling reveals transition from continental breakup to early magmatic crust , 1998 .

[2]  Paul J. Wallace,et al.  Proceedings of the Ocean Drilling Program, 173 Initial Reports , 1998 .

[3]  Cheng-Wen Chang,et al.  Evidence from Ocean Drilling Program Leg 149 mafic igneous rocks for oceanic crust in the Iberia Abyssal Plain , 1997 .

[4]  J. Bédard,et al.  Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland; implications for the genesis of boninitic and related magmas , 1997 .

[5]  José M. Torres-Ruiz,et al.  Platinum-group-element distribution in subcontinental mantle: evidence from the Ivrea Zone (Italy) and the Betic – Rifean cordillera (Spain and Morocco) , 1997 .

[6]  J. Amossé,et al.  Differentiation of platinum-group elements (PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range (Ronda and Beni Bousera) , 1996 .

[7]  R. Whitmarsh,et al.  Insight into the nature of the ocean-continent transition off West Iberia from a deep multichannel seismic reflection profile , 1996 .

[8]  D. Bideau,et al.  Construction of the oceanic lithosphere by magmatic intrusions: Petrological evidence from plutonic rocks formed along the fast-spreading East Pacific Rise , 1996 .

[9]  J. Lorand,et al.  Non-chondritic platinum-group element ratios in the Earth's mantle , 1996, Nature.

[10]  K. Seifert,et al.  Geochemistry of serpentinized mantle peridotite from Site 897 in the Iberia Abyssal Plain , 1996 .

[11]  M. Beslier,et al.  Petrologic characteristics of the ultramafic rocks from the ocean/continent transition in the Iberia Abyssal Plain , 1996 .

[12]  D. Weis,et al.  Geochemistry of metamorphosed cumulate gabbros from Hole 900A, Iberia Abyssal Plain , 1996 .

[13]  M. Beslier,et al.  Tectono-metamorphic evolution of peridotites from the ocean/continent transition of the Iberia Abyssal Plain margin , 1996 .

[14]  C. Krawczyk,et al.  Evidence for Detachment Tectonics on the Iberia Abyssal Plain rifted margin , 1996 .

[15]  D. Demaiffe,et al.  Petrology and geochemistry of magmatic suites of rocks in the continental and oceanic crusts : a volume dedicated to Professor Jean Michot , 1996 .

[16]  H. Prichard,et al.  Platinum-group element concentrations in mafic and ultramafic lithologies drilled from the Hess Deep. , 1996 .

[17]  K. Gueddari Approche géochimique et physico-chimique de la différenciation des éléments du groupe du platine (PGE) et de l'or dans le manteau supèrieur bético-rifain et dans les xénolites de péridotites sous continentales , 1996 .

[18]  G. Garuti,et al.  Iridium, rhodium, and platinum sulfides in chromitites from the ultramafic massifs of Finero, Italy, and Ojen, Spain , 1995 .

[19]  I. Vacondios,et al.  GEOCHEMISTRY OF CHROMITITES AND HOST ROCKS FROM THE PINDOS OPHIOLITE COMPLEX, NORTHWESTERN GREECE , 1995 .

[20]  R. Whitmarsh,et al.  Models of the development of the West Iberia rifted continental margin at 40°30′N deduced from surface and deep‐tow magnetic anomalies , 1995 .

[21]  U. Schärer,et al.  Gabbro and related rock emplacement beneath rifting continental crust: UPb geochronological and geochemical constraints for the Galicia passive margin (Spain) , 1995 .

[22]  U. Schärer,et al.  A lithospheric syn-rift shear zone at the ocean-continent transition : preliminary results of the GALINAUTE II cruise (Nautile dives on the Galicia Bank, Spain) , 1995 .

[23]  John F. Casey,et al.  An Ultramafic Lift at the Mid-Atlantic Ridge: Successive Stages of Magmatism in Serpentinized Peridotites from the 15°N Region , 1995 .

[24]  C. Krawczyk,et al.  The formation of passive margins: constraints from the crustal structure and segmentation of the deep Galicia margin, Spain , 1995, Geological Society, London, Special Publications.

[25]  D. S. Sawyer,et al.  Proceedings of the Ocean Drilling Program, 149 Initial Reports , 1994 .

[26]  E. Bonatti,et al.  Na, AlIV and AlVI in clinopyroxenes of subcontinental and suboceanic ridge peridotites: a clue to different melting processes in the mantle? , 1994 .

[27]  J. Lorand,et al.  Copper and Noble Metal Enrichments Across the Lithosphere—Asthenosphere Boundary of Mantle Diapirs: Evidence from the Lanzo Lherzolite Massif , 1993 .

[28]  O. E. S. Party ODP drills the West Iberia rifted margin , 1993 .

[29]  R. Pedersen,et al.  Stratiform platinum-group element mineralizations in the ultramafic cumulates of the Leka ophiolite complex, central Norway , 1993 .

[30]  M. Ask,et al.  Ocean-continent boundary in the Iberia Abyssal Plain from multichannel seismic data , 1993 .

[31]  R. Whitmarsh,et al.  Ocean-Continent Transition in the Iberia Abyssal Plain , 1992 .

[32]  M. Ohnenstetter Platinum group element enrichment in the upper mantle peridotites of the Monte Maggiore ophiolitic massif (Corsica, France): Mineralogical evidence for ore-fluid metasomatism , 1992 .

[33]  R. Hébert,et al.  Petrology of hydrothermal metamorphism of oceanic layer 3; implications for sulfide parageneses and redistribution , 1991 .

[34]  S. P. Srivastava,et al.  Motion of Iberia since the Late Jurassic : results from detailed aeromagnetic measurements in the Newfoundland Basin , 1990 .

[35]  D. Bideau,et al.  Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise) , 1990 .

[36]  M. Beslier,et al.  Kinematics of peridotite emplacement during North Atlantic continental rifting, Galicia, northwestern Spain , 1990 .

[37]  M. Bergeron,et al.  Distribution of PGE in pyroxene-bearing ultramafic cumulates in the Thetford Mines ophiolitic complex, Quebec , 1990 .

[38]  S. Edwards,et al.  Harzburgites and refractory melts in the Lewis Hills Massif, Bay of Islands ophiolite complex; the base-metals and precious-metals story , 1990 .

[39]  M. Leblanc,et al.  Noble metals segregation and fractionation in magmatic ores from Ronda and Beni Bousera Lherzolite Massifs (Spain, Morocco) , 1990 .

[40]  R. Hékinian,et al.  Mineral chemistry of ultramafic tectonites and ultramafic to gabbroic cumulates from the major oceanic basins and Northern Apennine ophiolites (Italy). A comparison , 1989 .

[41]  S. Wood,et al.  Thermodynamic constraints on the solubility of platinum and palladium in hydrothermal solutions; reassessment of hydroxide, bisulfide, and ammonia complexing , 1989 .

[42]  G. Boillot,et al.  Undercrusting by serpentinite beneath rifted margins , 1989, Nature.

[43]  A. J. Naldrett,et al.  Magmatic Sulfide Deposits , 1989 .

[44]  J. Lorand Abundance and distribution of CuFeNi sulfides, sulfur, copper and platinum-group elements in orogenic-type spinel lherzolite massifs of Ariège (northeastern Pyrenees, France) , 1989 .

[45]  P. Begou Distribution des éléments du groupe du platine et de l'or dans les roches basiques et ultrabasiques : approche de leur comportement géochimique orthomagmatique pendant les phénomènes de fusion partielle et de cristallisation fractionnée , 1989 .

[46]  J. Kornprobst,et al.  Plagioclase-Bearing Ultramafic Tectonites from the Galicia Margin (Leg 103, Site 637): Comparison of Their Origin and Evolution with Low-Pressure Ultramafic Bodies in Western Europe , 1988 .

[47]  C. Evans,et al.  Structural Analysis of Plagioclase-Bearing Peridotites Emplaced at the End of Continental Rifting: Hole 637A, ODP Leg 103 on the Galicia Margin , 1988 .

[48]  C. Mével,et al.  The gneiss of Zabargad Island: deep crust of a rift , 1988 .

[49]  R. Vannucci,et al.  The Zabargad peridotite-pyroxenite association: petrological constraints on its evolution , 1988 .

[50]  R. Pedersen,et al.  The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway , 1988 .

[51]  G. Garuti,et al.  Sulfide mineralogy and chalcophile and siderophile element abundances in the Ivrea-Verbano mantle peridotites (Western Italian Alps) , 1984 .

[52]  W. Bryan,et al.  Fractionation of pyroxene-phyric MORB at low pressure: An experimental study , 1983 .

[53]  J. Crocket,et al.  Noble metals in Thetford Mines ophiolites, Quebec, Canada; Part I, Distribution of gold, iridium, platinum, and palladium in the ultramafic and gabbroic rocks , 1982 .

[54]  R. Keays,et al.  Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle , 1981 .

[55]  D. Ohnenstetter,et al.  Na and Cr contents in clinopyroxenes from peridotites: A possible discriminant between “sub-continental” and “sub-oceanic” mantle , 1981 .

[56]  A. J. Naldrett,et al.  Platinum Metals Magmatic Sulfide Ores , 1980, Science.

[57]  G. Torrent,et al.  Ocean-continent boundary off the Iberian margin: A serpentinite diapir west of the Galicia Bank , 1980 .

[58]  J. Crocket,et al.  Determination of Palladium, Iridium, and Gold in Mafic and Ultramafic Rocks Drilled from the Mid-Atlantic Ridge, DSDP Leg 37 , 1977 .

[59]  K. GhasemiFalavarjani American Mineralogist , 1916 .