Plasmonic properties of a metallic torus.

Using the plasmon hybridization method, we investigate the optical properties of metallic tori of different shapes and for different polarizations. The plasmon energies are found to be strongly dependent on polarization and on the aspect ratio of the torus, which we define as the ratio of the radii of the two circles that define the structure. For incident light polarized in the plane of the torus, the optical spectrum is characterized by two features, a long wavelength highly tunable dipolar plasmon resonance, and a short wavelength mode corresponding to excitation of several higher order torus modes. For aspect ratios smaller than 0.8, we find that the energy of the tunable dipolar torus mode can be described analytically as an infinite cylinder plasmon of a wavelength equal to the length of the tube. For perpendicular polarization, the spectrum exhibits a single feature made up of several closely spaced higher order torus modes which are only weakly dependent on the aspect ratio. The calculated optical properties are found to be in excellent agreement with results from numerical finite difference time domain calculations and with results from other groups.

[1]  D. Neuhauser,et al.  Molecular nanopolaritonics: cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control. , 2007, The Journal of chemical physics.

[2]  Kyung-Young Jung,et al.  $\hbox{Au/SiO}_{2}$ Nanoring Plasmon Waveguides at Optical Communication Band , 2007, Journal of Lightwave Technology.

[3]  Naomi J. Halas,et al.  Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells , 2005 .

[4]  S. M. Wang,et al.  Tunable coupled plasmon modes via nanoshell particle chains , 2007 .

[5]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[6]  Paolo Mazzoldi,et al.  Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems , 2007 .

[7]  A. Dereux,et al.  Localized surface plasmons on a torus in the nonretarded approximation , 2005 .

[8]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[9]  H. Wilson,et al.  Electrostatic Excitation of a Conducting Toroid: Exact Solution and Thin-Wire Approximation , 2005 .

[10]  Naomi J. Halas,et al.  GENERAL VECTOR BASIS FUNCTION SOLUTION OF MAXWELL'S EQUATIONS , 1997 .

[11]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[12]  M. T. Burnett,et al.  Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities , 2007 .

[13]  Amparo Gil,et al.  Evaluation of toroidal harmonics , 2000 .

[14]  Peter Nordlander,et al.  Plasmonic nanostructures: artificial molecules. , 2007, Accounts of chemical research.

[15]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[16]  F. Zhao,et al.  Gold Nanoparticle Aggregate Morphology with Controllable Interparticle Spacing Prepared by a Polyelectrolyte Network Template , 2008 .

[17]  Jian Zhang,et al.  Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[18]  Optical absorption of torus-shaped metal nanoparticles in the visible range , 2007 .

[19]  P. Tomchuk,et al.  Optical properties of metal nanotubes and metal nanoshells , 2008 .

[20]  Albert Polman,et al.  Plasmon-based nanolenses assembled on a well-defined DNA template. , 2008, Journal of the American Chemical Society.

[21]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[22]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[23]  Naomi J. Halas,et al.  Plasmon Resonance Shifts of Au-Coated Au 2 S Nanoshells: Insight into Multicomponent Nanoparticle Growth , 1997 .

[24]  J. Devreese,et al.  Multielectron bubbles in helium as a paradigm for studying electrons on surfaces with curvature , 2007 .

[25]  Naomi J. Halas,et al.  Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment , 2004 .

[26]  Peter Nordlander,et al.  Plasmonic coupling between a metallic nanosphere and a thin metallic wire , 2006 .

[27]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[28]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[29]  Cheng Sun,et al.  Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures , 2007 .

[30]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[31]  T. Mallouk,et al.  pH-Dependent Intercalation of Gold Nanoparticles into a Synthetic Fluoromica Modified with Poly(Allylamine) , 2007 .

[32]  P. Nordlander,et al.  Plasmon modes of curvilinear metallic core/shell particles. , 2007, The Journal of chemical physics.

[33]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[34]  Harald Giessen,et al.  Plasmon Hybridization in Stacked Cut‐Wire Metamaterials , 2007 .

[35]  Naomi J. Halas,et al.  Plasmonic interactions between a metallic nanoshell and a thin metallic film , 2007 .

[36]  Javier Aizpurua,et al.  Numerical simulation of electron energy loss near inhomogeneous dielectrics , 1997 .

[37]  R. T. Phillips,et al.  Moving nanoparticles with Raman scattering. , 2007, Nano letters.

[38]  Mino Green,et al.  SERS Substrates Fabricated by Island Lithography: The Silver/Pyridine System , 2003 .

[39]  Q. Huo,et al.  Monofunctional gold nanoparticles: synthesis and applications , 2007 .

[40]  J. Batteas,et al.  Directed electroless growth of metal nanostructures on patterned self-assembled monolayers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[41]  P. Nordlander,et al.  Finite-difference time-domain studies of the optical properties of nanoshell dimers. , 2005, The journal of physical chemistry. B.

[42]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[43]  Xiaodong Xu,et al.  Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells , 2008 .

[44]  Magnetic vortex-like excitations on a sphere , 2007, cond-mat/0703134.

[45]  Enhanced Thermoplasmonic Oscillations in Metallic Nanostructured Particles for the Realization of Nanofluidic Sensors , 2007, IEEE Transactions on Nanotechnology.

[46]  Alexander Moroz,et al.  Optical properties of spherical and oblate spheroidal gold shell colloids , 2008 .

[47]  J. Aizpurua,et al.  Light Scattering in Gold Nanorings , 2004 .

[48]  J. Shumaker-Parry,et al.  Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. , 2008, Nano letters.