TrueTop: A Sybil-Resilient System for User Influence Measurement on Twitter

Influential users have great potential for accelerating information dissemination and acquisition on Twitter. How to measure the influence of Twitter users has attracted significant academic and industrial attention. Existing influence measurement techniques are vulnerable to sybil users that are thriving on Twitter. Although sybil defenses for online social networks have been extensively investigated, they commonly assume unique mappings from human-established trust relationships to online social associations and thus do not apply to Twitter where users can freely follow each other. This paper presents TrueTop, the first sybil-resilient system to measure the influence of Twitter users. TrueTop is rooted in two observations from real Twitter datasets. First, although non-sybil users may incautiously follow strangers, they tend to be more careful and selective in retweeting, replying to, and mentioning other users. Second, influential users usually get much more retweets, replies, and mentions than non-influential users. Detailed theoretical studies and synthetic simulations show that TrueTop can generate very accurate influence measurement results with strong resilience to sybil attacks.

[1]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[2]  Jacob Ratkiewicz,et al.  Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams , 2010, ArXiv.

[3]  Eric J. Friedman,et al.  Manipulability of PageRank under Sybil Strategies , 2006 .

[4]  George Danezis,et al.  SybilInfer: Detecting Sybil Nodes using Social Networks , 2009, NDSS.

[5]  Scott Counts,et al.  Identifying topical authorities in microblogs , 2011, WSDM '11.

[6]  Alok N. Choudhary,et al.  Towards Online Spam Filtering in Social Networks , 2012, NDSS.

[7]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[8]  Jacob Ratkiewicz,et al.  Truthy: mapping the spread of astroturf in microblog streams , 2010, WWW.

[9]  Hawoong Jeong,et al.  Comparison of online social relations in volume vs interaction: a case study of cyworld , 2008, IMC '08.

[10]  Gianluca Stringhini,et al.  COMPA: Detecting Compromised Accounts on Social Networks , 2013, NDSS.

[11]  Virgílio A. F. Almeida,et al.  Detecting Spammers on Twitter , 2010 .

[12]  Jun Li,et al.  On the state of OSN-based Sybil defenses , 2014, 2014 IFIP Networking Conference.

[13]  Virgílio A. F. Almeida,et al.  Characterizing user behavior in online social networks , 2009, IMC '09.

[14]  Michael Kaminsky,et al.  SybilLimit: A Near-Optimal Social Network Defense against Sybil Attacks , 2008, S&P 2008.

[15]  Lakshminarayanan Subramanian,et al.  Sybil-Resilient Online Content Voting , 2009, NSDI.

[16]  Dawn Xiaodong Song,et al.  Design and Evaluation of a Real-Time URL Spam Filtering Service , 2011, 2011 IEEE Symposium on Security and Privacy.

[17]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[18]  Guy E. Blelloch,et al.  GraphChi: Large-Scale Graph Computation on Just a PC , 2012, OSDI.

[19]  Fengyuan Xu,et al.  SybilDefender: Defend against sybil attacks in large social networks , 2012, 2012 Proceedings IEEE INFOCOM.

[20]  Vern Paxson,et al.  Trafficking Fraudulent Accounts: The Role of the Underground Market in Twitter Spam and Abuse , 2013, USENIX Security Symposium.

[21]  Michael Kaminsky,et al.  SybilGuard: Defending Against Sybil Attacks via Social Networks , 2008, IEEE/ACM Transactions on Networking.

[22]  Feng Xiao,et al.  SybilLimit: A Near-Optimal Social Network Defense against Sybil Attacks , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[23]  Guanhua Yan,et al.  On the impact of social botnets for spam distribution and digital-influence manipulation , 2013, 2013 IEEE Conference on Communications and Network Security (CNS).

[24]  Gang Wang,et al.  Follow the green: growth and dynamics in twitter follower markets , 2013, Internet Measurement Conference.

[25]  Gourab Ghoshal,et al.  Ranking stability and super-stable nodes in complex networks. , 2011, Nature communications.

[26]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[27]  Martín Abadi,et al.  Innocent by association: early recognition of legitimate users , 2012, CCS '12.

[28]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[29]  Hector Garcia-Molina,et al.  The Eigentrust algorithm for reputation management in P2P networks , 2003, WWW '03.

[30]  Aziz Mohaisen,et al.  On the mixing time of directed social graphs and security implications , 2012, ASIACCS '12.

[31]  Aziz Mohaisen,et al.  Measuring the mixing time of social graphs , 2010, IMC '10.

[32]  Ben Y. Zhao,et al.  Understanding latent interactions in online social networks , 2010, IMC '10.

[33]  Vern Paxson,et al.  @spam: the underground on 140 characters or less , 2010, CCS '10.

[34]  Ehrhard Behrends Introduction to Markov Chains With Special Emphasis on Rapid Mixing , 2013 .

[35]  Konstantin Beznosov,et al.  The socialbot network: when bots socialize for fame and money , 2011, ACSAC '11.

[36]  Ben Y. Zhao,et al.  User interactions in social networks and their implications , 2009, EuroSys '09.

[37]  Michael Sirivianos,et al.  Aiding the Detection of Fake Accounts in Large Scale Social Online Services , 2012, NSDI.

[38]  Haifeng Yu,et al.  Sybil defenses via social networks: a tutorial and survey , 2011, SIGA.

[39]  Guofei Gu,et al.  Analyzing spammers' social networks for fun and profit: a case study of cyber criminal ecosystem on twitter , 2012, WWW.

[40]  Krishna P. Gummadi,et al.  An analysis of social network-based Sybil defenses , 2010, SIGCOMM '10.

[41]  Ben Y. Zhao,et al.  Uncovering social network sybils in the wild , 2011, IMC '11.

[42]  Franz Rothlauf,et al.  On the importance of the second largest eigenvalue on the convergence rate of genetic algorithms , 2001 .

[43]  Filippo Menczer,et al.  The rise of social bots , 2014, Commun. ACM.

[44]  Huan Liu,et al.  Social Spammer Detection in Microblogging , 2013, IJCAI.

[45]  Krishna P. Gummadi,et al.  Understanding and combating link farming in the twitter social network , 2012, WWW.

[46]  Gianluca Stringhini,et al.  Detecting spammers on social networks , 2010, ACSAC '10.

[47]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[48]  M. Newman Analysis of weighted networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Fabrício Benevenuto,et al.  You followed my bot! Transforming robots into influential users in Twitter , 2013, First Monday.

[50]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.