Discussion on Minimal Curvature Variation in Cubic Hermite Curve Construction
暂无分享,去创建一个
[1] Berthold K. P. Horn. The Curve of Least Energy , 1983, TOMS.
[2] Malcolm A. Sabin,et al. High accuracy geometric Hermite interpolation , 1987, Comput. Aided Geom. Des..
[3] T. Sakkalis,et al. Pythagorean hodographs , 1990 .
[4] Wendelin L. F. Degen. High accurate rational approximation of parametric curves , 1993, Comput. Aided Geom. Des..
[5] K. Höllig,et al. Geometric Hermite interpolation , 1995 .
[6] C. A. Neff,et al. Hermite interpolation by Pythagorean hodograph quintics , 1995 .
[7] J. Koch,et al. Geometric Hermite interpolation with maximal orderand smoothness , 1996, Comput. Aided Geom. Des..
[8] Dereck S. Meek,et al. Hermite interpolation with Tschirnhausen cubic spirals , 1997, Comput. Aided Geom. Des..
[9] D. Walton,et al. Geometric Hermite interpolation with Tschirnhausen cubics , 1997 .
[10] Yifan Chen,et al. Direct highlight line modification on nurbs surfaces , 1997, Comput. Aided Geom. Des..
[11] Ulrich Reif. On the local existence of the quadratic geometric Hermite interpolant , 1999, Comput. Aided Geom. Des..
[12] Shi-Min Hu,et al. A note on approximation of discrete data by G1 arc splines , 1999, Comput. Aided Des..
[13] Caiming Zhang,et al. Fairing spline curves and surfaces by minimizing energy , 2001, Comput. Aided Des..
[14] Jun-Hai Yong,et al. Geometric Hermite curves with minimum strain energy , 2004, Comput. Aided Geom. Des..
[15] Caiming Zhang,et al. Constructing geometric Hermite curve with minimum curvature variation , 2005, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05).
[16] Guoliang Xu,et al. G2 surface modeling using minimal mean-curvature-variation flow , 2007, Comput. Aided Des..