Iterative reweighted least-squares design of FIR filters

Develops a new iterative reweighted least squares algorithm for the design of optimal L/sub p/ approximation FIR filters. The algorithm combines a variable p technique with a Newton's method to give excellent robust initial convergence and quadratic final convergence. Details of the convergence properties when applied to the L/sub p/ optimization problem are given. The primary purpose of L/sub p/ approximation for filter design is to allow design with different error criteria in pass and stopband and to design constrained L/sub 2/ approximation filters. The new method can also be applied to the complex Chebyshev approximation problem and to the design of 2D FIR filters. >

[1]  A. J. Sieradski An Introduction to Topology and Homotopy , 1991 .

[2]  Chong-Yung Chi,et al.  A new self-initiated WLS approximation method for the design of two-dimensional equiripple FIR digital filters , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[3]  Jennifer Adams,et al.  FIR digital filters with least-squares stopbands subject to peak-gain constraints , 1991 .

[4]  John S. D. Mason,et al.  Complex Chebyshev approximation for FIR digital filters , 1991, IEEE Trans. Signal Process..

[5]  Thomas W. Parks,et al.  Design of FIR filters in the complex domain , 1987, IEEE Trans. Acoust. Speech Signal Process..

[6]  J. Rice,et al.  The Lawson algorithm and extensions , 1968 .

[7]  Wen-Shyong Yu,et al.  An l/sub 1/-approximation based method for synthesizing FIR filters , 1992 .

[8]  S. Thomas Alexander,et al.  A relationship between the recursive least squares update and homotopy continuation methods , 1991, IEEE Trans. Signal Process..

[9]  L. Karlovitz,et al.  Construction of nearest points in the Lp, p even, and L∞ norms. I , 1970 .

[10]  Minsoo Suk,et al.  On the frequency weighted least-square design of finite duration filters , 1975 .

[11]  G. D. Taylor,et al.  Convex Lp approximation , 1983 .

[12]  S. W. Kahng Best L p Approximation , 1972 .

[13]  R.W. Schafer,et al.  Constrained iterative restoration algorithms , 1981, Proceedings of the IEEE.

[14]  L. J. Griffiths,et al.  A simple algorithm to achieve desired patterns for arbitrary arrays , 1992, IEEE Trans. Signal Process..

[15]  R. Fletcher,et al.  The Calculation of Linear Best L_p Approximations , 1971, Comput. J..

[16]  H. Ekblom Calculation of linear bestLp-approximations , 1973 .

[17]  Jose Antonio Barreto L(p)-approximation by the iteratively reweighted least squares method and the design of digital FIR filters in one dimension , 1993 .

[18]  Richard E. Stone,et al.  Erratum: The Simplex and Projective Scaling Algorithms as Iteratively Reweighted Least Squares Methods , 1991, SIAM Rev..

[19]  S. W. Kahng Best _{} approximation , 1972 .

[20]  Lloyd J. Griffiths,et al.  Are equiripple digital FIR filters always optimal with minimax error criterion? , 1994, IEEE Signal Processing Letters.

[21]  C.-Y. Tseng A numerical algorithm for complex Chebyshev FIR filter design , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[22]  C. Sidney Burrus,et al.  Iterative reweighted least squares and the design of two-dimensional FIR digital filters , 1994, Proceedings of 1st International Conference on Image Processing.

[23]  M. Schulist Complex approximation with additional constraints , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[25]  J. S. Mason,et al.  New approach to the design of fir digital filters , 1987 .

[26]  Ivan W. Selesnick,et al.  Reweighted Least Squares Design of Fir Filters , 1992, The Digital Signal Processing workshop.

[27]  G. A. Watson,et al.  Convex L p approximation , 1988 .

[28]  Yong Ching Lim,et al.  A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design , 1992, IEEE Trans. Signal Process..

[29]  K. Preuss A novel approach for complex Chebyshev-approximation with FIR filters using the Remez exchange algorithm , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  J.-P. Kahane,et al.  Best approximation in $L^1 \left( T \right)$ , 1974 .

[31]  R. Mersereau,et al.  A comparison of algorithms for minimax design of two-dimensional linear phase FIR digital filters , 1977 .

[32]  M. Powell,et al.  Approximation theory and methods , 1984 .

[33]  V. Algazi,et al.  Design of almost minimax FIR filters in one and two dimensions by WLS techniques , 1986 .

[34]  E. Cheney Introduction to approximation theory , 1966 .

[35]  Bruce L. Chalmers,et al.  Best approximation in L∞ via iterative Hilbert space procedures , 1984 .

[36]  Markus Lang,et al.  Nonlinear phase FIR filter design with minimum LS error and additional constraints , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[37]  Klaus Preuss,et al.  On the design of FIR filters by complex Chebyshev approximation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[38]  Karl H. Usow,et al.  On $L_1 $ Approximation I: Computation for Continuous Functions and Continuous Dependence , 1967 .

[39]  G. A. Watson An Algorithm for Linear L 1 Approximation of Continuous Functions , 1981 .

[40]  M. Fahmy,et al.  An efficient l p optimization technique for the design of two-dimensional linear-phase FIR digital filters , 1980 .

[41]  Elwood T. Olsen,et al.  L1 and L∞ minimization via a variant of Karmarkar's algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[42]  Rao Yarlagadda,et al.  Lp normed minimization with applications to linear predictive modeling for sinusoidal frequency estimation , 1991, Signal Process..

[43]  C. S. Burrus,et al.  Least p-power error design of FIR filters , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[44]  T. W. Parks,et al.  Digital Filter Design , 1987 .

[45]  C. Sidney Burrus,et al.  L/sub p/-complex approximation using iterative reweighted least squares for FIR digital filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[46]  John David Fisher DESIGN OF FINITE-IMPULSE RESPONSE DIGITAL FILTERS , 1974 .

[47]  Matthias Schulist,et al.  Improvements of a complex FIR filter design algorithm , 1990 .